
Applied Intelligence
https://doi.org/10.1007/s10489-018-1248-5

Posterior sampling for Monte Carlo planning under uncertainty

Aijun Bai1 · FengWu2 · Xiaoping Chen2

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Monte Carlo tree search (MCTS) has recently been drawing great interest in the domain of planning and learning under
uncertainty. One of the fundamental challenges is the trade-off between exploration and exploitation. To address this
problem, we propose to balance between exploration and exploitation via posterior sampling in the contexts of Markov
decision process (MDP) and partially observable Markov decision process (POMDP). Specifically, we treat the cumulative
reward returned by taking an action from a search node in the MCTS search tree as a random variable following an unknown
distribution. We parametrize this distribution by introducing necessary hidden parameters, and infer the posterior distribution
of the hidden parameters in a Bayesian way. We further expand a node in the search tree by using Thompson sampling to
select an action based on its posterior probability of being optimal. Following this idea, we developDirichlet-NormalGamma
based Monte Carlo tree search (DNG-MCTS) and Dirichlet-Dirichlet-NormalGamma based partially observable Monte
Carlo planning (D2NG-POMCP) algorithms respectively for Monte Carlo planning in MDPs and POMDPs. Experimental
results show that the proposed algorithms outperform the state-of-the-art with better values on several benchmark problems.

Keywords Monte Carlo tree search · Thompson sampling · Planning under uncertainty

1 Introduction

The general task of sequential decision-making under
uncertainty is of great interest to the Artificial Intelligence
(AI) community. It embraces a broad range of common
problems found in planning and learning. Currently,
the most general and clear fundamental formulations
for these problems are achieved through the theories
of Markov decision processes (MDPs) and Partially
observable Markov decision processes (POMDPs). MDP
provides a rich mathematical framework for planning and
learning under uncertainty in fully observable environments
[64]; POMDP extends MDP to partially observable

� Feng Wu
wufeng02@ustc.edu.cn

Aijun Bai
aijun.bai@microsoft.com

Xiaoping Chen
xpchen@ustc.edu.cn

1 Cloud & AI One Microsoft Way, Redmond,
WA 98052, USA

2 University of Science and Technology of China,
96 Jinzhai Road, Hefei, Anhui 230026, China

environments [46]. For many real-world problems (e.g.
robotics and computer games to name a few), fully specified
MDP/POMDP models represented as transition and reward
functions are not easy to obtain. However, simulators (a.k.a.
generative models) are usually available, or are relatively
easy to develop. In this paper, we consider the problems
of approximately solving MDPs and POMDPs online given
only the underlying simulators via Monte Carlo tree search
(MCTS) [20]. In the context of planning and learning
under uncertainty, the key idea of MCTS is to evaluate
each tree node (i.e., a state for an MDP or a belief state
for a POMDP) using sampled trajectories starting from
that node. It eventuelly finds a near-optimal policy by
building a best-first search tree based on Monte Carlo
simulation. MCTS is a model-free method and requires only
a generative model of the underlying problem. MCTS has
shown to be computationally efficient, anytime and highly
parallelisable. To date, great success has been achieved by
MCTS in variety of domains, such as playing games [37,
68, 69, 81], planning under uncertainty [8, 52, 70], and
Bayesian reinforcement learning [5, 42, 78].

One of the fundamental challenges of MCTS is the
well-known exploration vs. exploitation dilemma. That is
to say, when building the search tree, the agent must not
only exploit by selecting the action that currently seems

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-018-1248-5&domain=pdf
http://orcid.org/0000-0002-5164-4629
mailto: wufeng02@ustc.edu.cn
mailto: aijun.bai@microsoft.com
mailto: xpchen@ustc.edu.cn

A. Bai et al.

best, but should also keep exploring for possible higher
future pay-offs [47, 73]. Expanding the action that currently
seems best can keep the search focused in known promising
area, but could also miss better actions that have not
been explored sufficiently. On the other hand, too much
exploring on sub-optimal actions wastes significant portion
of limited computational resources. UCB1 is probably the
most successful and widely-used algorithm to address this
dilemma [6, 7]. It is originally introduced in the multi-
armed bandit problems (MABs) [55]. An algorithm for
an MAB must decide which action (namely an arm) to
apply at each time step, based on the outcomes of the
previous plays. UCB1 selects the action that maximizes the
UCB1 heuristic which defines an upper confidence bound
(UCB) for the underlying action-values. Auer et al. [7]
prove that UCB1 is asymptotically optimal for MABs. On
the other hand, Thompson sampling is perhaps one of the
earliest heuristics that tackles this problem in a Bayesian
fashion according to the principle of randomized probability
matching [75]. It stochastically selects an action based on
its posterior probability of being optimal. Comparing to
UCB1, one of the main advantages of Thompson sampling
is that it can handle a wide range of information models with
prior and posterior distributions, which go beyond using the
expectations of reward alone [38].

In MABs, there usually exist two assessment criterions:
a cumulative regret defined as the difference between
the sum of the best action’s expected reward and the
obtained reward of actual actions applied so far, and
a simple regret defined as the difference between the
best expected reward and the expected reward of the
action with highest sample mean among all actions
currently. The cumulative regret is suitable for the cases
when an algorithm tries to optimize the long-term total
reward by trading off between exploration and exploitation
appropriately [21]. The simple regret makes more sense
for algorithms focusing on pure explorations of action
pulls where only the last action collects a reward [22].
Apart from the fact that Thompson sampling empirically
converges faster in terms of cumulative regret than the
UCB1 approach [24], it has recently been proved that
Thompson sampling achieves logarithmic cumulative regret
which is asymptotically optimal for MABs [1, 2, 48, 53]. In
Monte Carlo online planning, it is usually the final action
actually applied to the environment that collects a reward.
Therefore, it is more reasonable to minimize the simple
regret instead of the cumulative regret in the context of
Monte Carlo online planning [31]. However, simple and
cumulative regrets can not be minimized simultaneously;
moreover, Bubeck et al. [21] shows that in many cases
the smaller the cumulative regret, the greater the simple
regret. A recently growing understanding is that it is
better to balance between cumulative and simple regrets

in MCTS [77], since although the algorithm does not
collect a real reward when searching the tree, it is good to
grow the asymmetric tree more accurately by moderately
exploiting the current tree. The reduction rate in terms
of simple regret for Thompson sampling remains an open
question, however, it is our observation that Thompson
sampling empirically appears to have lower simple regret
than the state-of-the-art, particularly for larger action
space. This motivates us to apply Thompson sampling
on MCTS for MDPs and POMDPs as it seems to be a
promising approach in handling both cumulative and simple
regrets.

Our work is motivated by many real-world problems
that can be modeled as POMDPs. One of such examples
is the well-known Canadian traveller problem (CTP)1.
For the applicability of our settings, consider a robot
navigating outdoors (e.g., a search and rescue robot in
disaster response) equipped with an overhead map of
the surrounding area (generated by satellite or an aerial
vehicle). The resolution of the map may be much lower
than the resolution used by the robot to navigate. Due
to this low resolution, there is some uncertainty as to
whether portions of the terrain are actually traversable
or not, representing by some prior probabilities. Those
incomplete information may be crucial for the robot’s tasks.
In such problems, the robot usually uses a generative model
(a.k.a., a simulator2), which simulates the uncertainty of
the environment, when computing the best path. Note that
the up-to-date information is also incorporated in the model
as the robot moves on. Other applications include vessel
routing in the presence of uncertain weather conditions
and the routing of automobiles in the presence of partially
known and stochastically changing road congestion levels,
where automated driver assistance must reason about the
uncertainty with some prior knowledge and find the best
path in the environment involving random events and
incomplete information.

In this paper, we borrow the idea of Thompson sampling
and propose novel Bayesian posterior sampling approaches
to Monte Carlo based online planning in MDPs and
POMDPs under the assumption that only simulators are
available in advance. Specifically, based on our previous
effort [10, 12], we develop Dirichlet-NormalGamma based
Monte Carlo tree search (DNG-MCTS) and Dirichlet-
Dirichlet-NormalGamma based partially observable Monte
Carlo planning (D2NG-POMCP) algorithms for MDPs and
POMDPs respectively. In DNG-MCTS, we use a mixture
of Normal distributions to model the unknown distribution
of the cumulative reward of performing a particular action

1More details about the CTP problem is in Section 2.1.
2Discussion on the advantage of using a simulator is in Section 6.1.

Posterior sampling for Monte Carlo planning under uncertainty

in the MCTS search tree. We show that, in presence of
online planning for MDPs, a conjugate prior exists in the
form of a combination of Dirichlet and NormalGamma
distributions. By choosing the conjugate prior, it is then
relatively simple to compute the posterior distribution after
each cumulative reward has been observed by simulation
in the search process. Thompson sampling is then used
to select the action to be performed by simulation at
each decision node. The basic assumptions of DNG-
MCTS are made due to the fact that, given a policy,
an MDP reduces to a Markov chain defined over the
state space. Unfortunately, this cannot be straightforwardly
extended to POMDPs, because the Markov chain of a
POMDP with given policy must be defined over the joint
space of the state and belief space. Therefore, different
assumptions are critically required to use posterior sampling
techniques in POMDPs. Accordingly, in D2NG-POMCP,
we represent the uncertainty of the immediate reward as
a Multinomial distribution (which is known for MDPs in
contrast) and the cumulative reward returned by performing
an action from a belief state in the search tree as a convex
combination of Normal mixtures. We perform statistical
inference on the posterior distribution in Bayesian settings
by choosing the conjugate prior in the form of a combination
of two Dirichlet and one NormalGamma distributions.
We then use Thompson sampling to select an action to
be performed by simulation at each decision node. We
have tested the resulting algorithms on several benchmark
problems. Experimental results confirm that our algorithms
outperform the state-of-the-art online planning methods.
Furthermore, we show the convergence properties of the
proposed algorithms confirming the technical soundness.

The reminder of this paper is organized as follows. In
Section 2, we briefly review the background. Section 3
introduces some related work. Sections 4 and 5 present the
proposed algorithms in detail. Section 6 discusses on how
to choose prior distributions, and shows the convergence
property of the algorithms. We show experimental results on
several benchmark problems in Section 7. And in Section 8,
we conclude with a summary of our contributions and future
work.

2 Background

We briefly review the CTP problem, the MDP and POMDP
models, the MAB problem and the MCTS framework, as
well as the UCT and POMCP algorithms.

2.1 CTP

In the CTP problem, a Canadian driver must travel a
network of cities to her destination facing the situation

that snowfall randomly blocks roads3. For the driver, the
uncertainty is due to the fact that some roads may be
blocked by snowfall so she must explore other paths
towards her goal. In this scenario, the event of snowfall
blocking roads is stochastic and can be observed only
when she reaches those roads. The objective is then for
the driver to reach her destination as fast as possible with
minimum energy and time consumptions. In this case, the
cumulative reward of selecting a road follows an unknown
distribution depending on whether this road and the follow-
up roads are blocked. For such problem, it is generally
straightforward to design a simulator to simulate the travel
on a city network with snowfall randomly blocking roads.
Yet in the planning phase (i.e. the driver’s thinking phase
when playing with the simulator), being blocked by a
certain road doesn’t affect the final performance when
acting. In fact, being blocked during simulation would
instead reveal some hidden structure or information about
the underlying city network and its optimal travel policy,
which should be exploited in following simulations and
the final action phase. The real objective in simulation is
not the final cumulative reward that the driver can collect
during the action phase, but the so-called simple reward.
But optimizing simple reward directly almost equals pure
exploration without taking advantage of results that have
already been known during simulation, and is harmful
during the long run. In this paper, we apply Thompson
sampling in MCTS which appears to balance well between
pure exploration and exploitation. More details about the
problem settings can be found in Section 7.

2.2 MDP

Formally, an MDP is defined as a 4-tuple 〈S, A, T , R〉,
where S is the state space, A is the action space, T (s′ | s, a)

is the probability of reaching state s′ after having applied
action a in state s, and R(s, a) is the immediate reward
received. A policy π : S → A of an MDP is a mapping
from states to actions, with π(s) specifying the action which
should be taken in state s. Given a policy π , the expected
total reward of a state by following π (also known as the
value function) is defined as:

V π(s) = E

[∞∑
t=0

γ tR (st , π(st))

]
, (1)

where γ ∈ (0, 1] is a discount factor, st is the state in time
step t and π(st) is the action selected by policy π in state
st . The aim of solving an MDP is to find the optimal policy
π∗ that maximizes the value function for all states. The

3https://en.wikipedia.org/wiki/Canadian traveller problem

https://en.wikipedia.org/wiki/Canadian_traveller_problem

A. Bai et al.

respective optimal value function, denoted by V ∗, satisfies
the famous Bellman equation [16]:

V ∗(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

T (s′ | s, a)V ∗(s′)
}
. (2)

2.3 POMDP

A POMDP is an extension of MDP to partially
observable environments, which is defined as a 6-tuple
〈S, A, O, T , �, R〉, where S, A, T and R remain the same
meanings as in MDPs, O is the observation space, and
�(o | s, a) is the probability of observing o after hav-
ing performed action a and reached state s. A POMDP
can be transformed into an MDP over belief state (or
belief for short) space. A belief b is a sufficient statis-
tic for the history of actions and observations, defined as
a probability distribution over the state space, with b(s)

denoting the probability of being in state s. Given an ini-
tial belief b0, a history of action-observation pairs h =
(a0, o1, a1, o2, . . . at−1, ot) uniquely determines the result-
ing belief, which can be obtained by recursively using a
Bayesian filter b′ = ζ(b, a, o), written as:

b′(s′) = η�(o | s′, a)
∑
s∈S

T (s′ | s, a)b(s), (3)

where η = 1/P (o | b, a) is a normalizing constant.
Let B be the set of all possible beliefs, a policy π : B →

A of a POMDP is defined as a mapping from belief space
to actions. The goal of solving a POMDP is to find the
optimal policy that maximizes the expected total reward for
any beliefs. A POMDP can be transformed to a Bayesian-
adaptive MDP (BAMDP, also known as a belief MDP):
〈B, A, T +, r〉, where B is the state space, A is the action
space, r(b, a) = ∑

s∈S b(s)R(s, a) is the reward function,
and T + is the transition function, defined as:

T +(b′ | b, a) =
∑
o∈O

1[b′ = ζ(b, a, o)]�(o | b, a), (4)

where 1 is the indicator function. The Bellman equation of
the resulting MDP is:

V ∗(b)=max
a∈A

{
r(b, a)+γ

∑
o∈O

�(o | b, a)V ∗ (ζ(b, a, o))

}
.

(5)

Given an initial belief, the terms belief and history can be
used interchangeably. In this paper, we formally present our
main results in terms of belief, but implement the algorithm
with respect to histories instead.

2.4 MAB

MABs are usually seen as fundamental decision-making
components of planning and learning problems. Intuitively,
an MAB can be seen as an MDP with only one state s

and a stochastic reward function R(s, a) := Xa , where
Xa is a random variable following an unknown stationary
distribution fXa (x). At each time step t , one action at must
be chosen and executed. A stochastic reward Xat is then
observed. The goal of solving an MAB is usually to find a
policy that minimizes the cumulative regret defined as

RT = E

[
T∑

t=1

(Xa∗ − Xat)

]
, (6)

where a∗ is the oracle best action. A simple regret defined
for a pure exploration strategy after n times of action pulls
is:

rn = E [Xa∗ − Xā] , (7)

where ā = argmaxa∈AX̄a is the action with maximal
empirical mean of reward.

2.5 MCTS

In the domain of online planning for MDPs and POMDPs,
MCTS generally evaluates a node (i.e., a state in MDPs or a
belief state in POMDPs) in the search tree by: 1) selecting
an action according to an action-selection strategy; 2)
performing the selected action by Monte Carlo simulation;
3) recursively evaluating the resulting state/belief if it is
already in the search tree, or inserting it into the search tree
and playing a rollout policy by Monte Carlo simulations;
and 4) updating the statistics of tree nodes by back-
propagating the simulation results up to the root node
[20, 25]. Iteratively repeating this process, MCTS builds
an asymmetric best-first search tree simultaneously. When
interrupted at any time, MCTS reports the best action based
on current values of nodes in the search tree.

UCT In the context of Monte Carlo online planning for
MDPs, UCB applied to trees (UCT) perhaps is one of the
most popular implementations of MCTS [3, 4, 14, 32, 34,
36, 37, 50, 52, 81, 82]. It treats each state of the search tree
as an MAB, and selects the action that maximizes the UCB1
heuristic, defined as:

UCB1(s, a) = Q̄(s, a) + c

√
logN(s)

N(s, a)
, (8)

where Q̄(s, a) is the mean return of action a in state s from
all previous simulations, N(s, a) is the visitation count of
action a in state s, N(s) = ∑

a∈A N(s, a) is the overall
count, and c is a constant that determines the relative ratio
of exploration to exploitation. Kocsis et al. [52] proved that

Posterior sampling for Monte Carlo planning under uncertainty

with an appropriate choice of c the probability of selecting
the optimal action converges to 1 as the number of samples
grows to infinity.

POMCP Partially observable Monte Carlo planning
(POMCP) is an extension of UCT to POMDPs [70].
POMCP employs a root sampling technique to start the
search from a state sampled from belief b(h) associated with
history h of the root node, making the usage of only a state-
based simulator possible. At each decision node, POMCP
chooses the action that maximizes the UCB1 heuristic,
defined in terms of histories and actions:

UCB1(h, a) = Q̄(h, a) + c

√
logN(h)

N(h, a)
, (9)

where Q̄(h, a) is the average outcome of applying action
a in history node h over all previous simulations,
N(h, a) is the visitation count of action a following h,
N(h) = ∑

a∈A N(h, a) is the overall count, and c is
the exploration constant. POMCP uses a particle filter
[39, 76] to approximate the belief state, by adapting a
Monte Carlo procedure to update particles based on sampled
observations, rewards, and state transitions. Silver et al. [70]
show that, for a suitable choice of c, the value function
constructed by POMCP with the root sampling technique
converges in probability to the optimal value function.
POMCP has been shown with success in various problems
[13, 56, 78].

3 Related work

In the context of MDP online planning, real-time dynamic
programming (RTDP) [15, 18, 58, 67] is among the first
that tries to find the “best” action for the current state
by conducting a trial-based search process with greedy
action selection and an admissible heuristic. Instead of
trial-based search, AO* [19, 33, 43] builds an optimal
solution graph with respect to the AND-OR graph by
greedily expanding tip nodes in the current best par-
tial solution graph and assigning values to new nodes
according to an admissible heuristic function. MAXQ-
OP finds the best action efficiently by exploiting the
underlying hierarchical structure via MAXQ decomposi-
tion of the original MDP [9, 11]. MCTS finds near-optimal
policies by combining tree search methods with Monte
Carlo sampling techniques [10, 20, 31, 37, 49, 52]. Most
recently, trial-based heuristic tree search (THTS) [51]
was proposed to subsume these approaches by classify-
ing five ingredients including heuristic function, backup
function, action selection, outcome selection, and trial
length.

The fundamental assumption of DNG-MCTS is to model
the unknown distribution of the cumulative reward of apply-
ing an action in a state as a mixture of Normal distributions.
A similar assumption has been made in [27], where they
assumed a Normal distribution over the rewards. Compar-
ing with their approach, as we will show in Section 4, our
assumption on Normal mixture is more realistic according
to the central limit theorem on Markov chains. Tesauro et
al. [74] develops a Bayesian UCT approach to MCTS using
Gaussian approximation. Specifically, their method propa-
gates probability distributions of rewards from leaf nodes
up to the root node by applying MAX (or MIN) extremum
distribution operator for the interior nodes. Then, it uses
modified UCB1 heuristics to select actions on the basis of
the interior distributions. However, extremum distribution
operation is very time consuming since it must consider over
all the child nodes. In contrast, we treat each decision node
in the search tree as an MAB, maintain a posterior distribu-
tion over the cumulative reward for each applicable actions
separately, and then select the best action using Thompson
sampling.

Online planning methods for POMDPs aim to alleviate
the complexity of computing a full policy by planning only
for the current belief state [66]. Due to the differences of
expanding the current belief state, online planning methods
can be roughly classified into three categories: branch-
and-bound pruning, heuristic search and Monte Carlo
sampling. Branch-and-bound pruning technique prunes
nodes that are known to be suboptimal, thus preventing
the expansion of unnecessary branches of the search tree
[40, 41, 61, 62]. Heuristic search algorithms try to focus
the search on the most relevant reachable beliefs by using
heuristics to select the most promising belief nodes to
expand [54, 65, 71, 72, 80, 83]. Monte Carlo sampling
technique reduces the branching factor by sampling one
or more observations to conduct the search process,
allowing for deeper search within a set planning time
[17, 23, 57, 70, 76].

In the context of reinforcement learning, Wang et al.
[79] developed a posterior sampling technique for approx-
imating optimal decision-making for Bayesian reinforce-
ment learning. Osband et al. [59] extend the similar idea
to more general reinforcement learning problems. Specif-
ically, their approaches maintain a posterior distribution
over MDP models (i.e., the transition and reward func-
tions), sample an MDP, and solve the sampled MDP to
select an action for current decision-node. However, their
methods require to repeatedly solve the sampled MDP
for each action selected, which is very time consuming
for large problems. In contrast, our method directly main-
tains posterior distributions of action values and selects
an action based on its posterior probability of being
optimal.

A. Bai et al.

4 Posterior sampling basedMonte Carlo
planning for MDPs

This section presents the proposed Bayesian posterior
sampling algorithm for Monte Carlo online planning in
MDPs, namely DNG-MCTS.

4.1 Assumptions

We base our assumptions on the central limit theorem on
Markov chains [26, 45].

Theorem 1 (Central limit theorem on Markov chains)
Let X = {x0, x1, . . . } be an ergodic Markov chain on
a countable state space X with stationary distribution w

having support X . Let f be any bounded function defined
over X , and define μ = Ew[f] = ∫

X w(x)f (x)dx,
and σ = Varw (f (x0)) + 2

∑∞
i=1 Covw (f (x0), f (xi)). Let

N (0, σ 2) be a Normal distribution, then for any initial
distribution of x0, as n → ∞, we have:

√
n

(
1

n

n∑
t=0

f (xt) − μ

)
→ N (0, σ 2). (10)

Corollary 1 Theorem 1 indicates that the sample mean
1
n

∑n
t=0 f (st) follows N (μ, σ 2/n) as n grows to infinity.

It is then natural to approximate the distribution of
1
n

∑n
t=0 f (st) as a Normal distribution if n is sufficiently

large. Under this approximation, the sum
∑n

t=0 f (st) is also
following a Normal distribution, since n is a constant.

For a given MDP policy π , let Xs,π be a random variable
that denotes the cumulative reward of following policy π

starting from state s, and let Xs,a,π denotes the cumulative
reward of first performing action a in state s and then
following policy π thereafter. Our assumptions are:

Assumption 1 Xs,π is following a Normal distribution.

Assumption 2 Xs,a,π is following a mixture of Normal
distributions.

These are realistic approximations for our problems with
the following reasons. Given policy π , an MDP reduces to
a Markov chain {st } defined over a finite state space S with
transition function P(s′ | s) = T

(
s′ | s, π(s)

)
. Suppose the

resulting Markov chain {st } is ergodic, i.e., it is possible to
go from every state to every other state (not necessarily in
one move). For finite-horizon MDPs with planning horizon
H , if γ = 1, Xs0,π = ∑H

t=0 R(st , π(st)) is a sum of
f (st) = R(st , π(st)). According to Corollary 1, Xs0,π is
approximately normally distributed for each s0 ∈ S if H

is sufficiently large. In the case, if γ
= 1, it is still fairly

reasonable to approximate Xs0,π as a Normal distribution, if
H is sufficiently large and γ is close to 1.

If the policy π is not fixed and may change over time
(e.g., the derived policy of an online algorithm before it
converges), the real distribution ofXs,π is actually unknown
and could be very complex. However, if the algorithm
is guaranteed to converge in the limit (as discussed in
Section 6.3, this holds for the proposed DNG-MCTS
algorithm), it is convenient and reasonable to approximate
Xs,π as a Normal distribution.

Now consider the cumulative reward of performing
action a in state s and following policy π thereafter. By
definition,

Xs,a,π = R(s, a) + γXs′,π , (11)

where s′ is the next state distributed according to T (s′ |
s, a). Let Ys,a,π be a random variable defined as:

Ys,a,π = 1

γ

(
Xs,a,π − R(s, a)

)
. (12)

It follows that the probability density function (p.d.f.) of
Ys,a,π is a convex combination of the p.d.f.’s of Xs′,π for all
s′ ∈ S. Formally, we have:

fYs,a,π (x) =
∑
s′∈S

T (s′ | s, a)fXs′,π (x). (13)

Hence it is straightforward to model the distribution of
Ys,a,π as a mixture of Normal distributions, if Xs′,π is
assumed to be normally distributed for each s′ ∈ S. Since
Xs,a,π is a linear function of Ys,a,π , Xs,a,π is also following
a mixture of Normal distributions under our assumptions.

4.2 Bayesianmodeling and inference

Theorem 2 (Bayesian inference) Suppose the unknown
distribution of a random variable X is modeled as a
parametric likelihood function L(x | θ) depending on some
parameters θ . Let the prior distribution of θ be P(θ), After
observing a set of independent and identically distributed
samples Z = {x1, x2, . . . } from the distribution of X, the
posterior distribution of θ can then be obtained by applying
Bayes’ rule:

P(θ | Z) = ηP (Z | θ)P (θ) = η
∏
i

L(xi | θ)P (θ), (14)

where η = 1/P (Z) is a normalizing constant.

Theorem 2 and Assumption 1 indicate that it suffices to
model the distribution of Xs,π using a Normal likelihood
N (μs, 1/τs) with unknown mean μs and precision τs in
Bayesian settings. The precision is defined as the reciprocal
of the variance, such that τ = 1/σ 2. This is chosen for
mathematical convenience of introducing a NormalGamma
distribution as a conjugate prior [28].

Posterior sampling for Monte Carlo planning under uncertainty

Definition 1 (NormalGamma distribution) A Normal-
Gamma distribution is fully determined by a tuple of
hyper-parameters 〈μ0, λ, α, β〉, where λ > 0, α ≥
1 and β ≥ 0. Let
(·) be the gamma function, it
is said that (μ, τ) follows a NormalGamma distribution
NormalGamma(μ0, λ, α, β), if the p.d.f. of (μ, τ) has the
form:

f (μ, τ | μ0, λ, α, β) = βα
√

λ

(α)
√
2π

τα− 1
2 e−βτ e− λτ(μ−μ0)2

2 .

(15)

Let us briefly recall the posterior of (μ, τ). By definition,
the marginal distribution over τ is a Gamma distribution,
denoted by τ ∼ Gamma(α, β), and the conditional
distribution over μ given τ is a Normal distribution, denoted
by μ ∼ N (μ0, 1/(λτ)).

Theorem 3 (Posterior distribution of NormalGamma
parameters) Suppose X is normally distributed with
unknown mean μ and precision τ : X ∼ N (μ, 1/τ), and
the prior distribution of (μ, τ) has a NormalGamma dis-
tribution: (μ, τ) ∼ NormalGamma(μ0, λ0, α0, β0). After
observing n independent and identically distributed samples
of X, denoted by {x1, x2, . . . , xn}, let x̄ = ∑n

i=1 xi/n and
s = ∑n

i=1 (xi − x̄)2 /n be the sample mean and variance
respectively, according to Bayes’ theorem, the posterior dis-
tribution of (μ, τ) is also a NormalGamma distribution,
namely (μ, τ) ∼ NormalGamma(μn, λn, αn, βn), where:

μn = λ0μ0 + nx̄

λ0 + n
, (16)

λn = λ0 + n, (17)

αn = α0 + n

2
, (18)

βn = β0 + 1

2

(
ns + λ0n(x̄ − μ0)

2

λ0 + n

)
. (19)

Based on Assumption 2, the distribution of Ys,a,π can be
modeled as a Normal mixtures:

Ys,a,π ∼
∑
s′∈S

ws,a,s′N (μs′ ,
1

τs′
), (20)

where ws,a,s′ = T (s′ | s, a) are the mixture weights such
that ws,a,s′ ≥ 0 and

∑
s′∈S ws,a,s′ = 1. Notice that ws,a,s′

are previously unknown in Monte Carlo online planning
settings. A natural representation on these unknown weights
is via Dirichlet distributions, since Dirichlet distribution
is the conjugate prior of a general discrete probability
distribution [28]. For state s and action a, a Dirichlet
distribution, denoted by Dirichlet (ρs,a), where ρs,a =
(ρs,a,s1 , ρs,a,s2 , . . .) is a vector of hyper-parameters, gives
the posterior distribution of T (s′ | s, a) for each s′ ∈ S if
the transition from (s, a) to s′ has been observed ρs,a,s′ −

1 times. It follows that, after observing a new transition
(s, a) → s′, the posterior distribution is also a Dirichlet,
which can simply be updated as:

ρs,a,s′ ← ρs,a,s′ + 1. (21)

Therefore, to model the distribution of Xs,π and Xs,a,π ,
we need only to maintain a set of hyper-parameters
〈μs,0, λs, αs, βs〉 and ρs,a for all states s and state-action
pairs (s, a) encountered in the MCTS search tree and update
them by using Bayes’ rule.

4.3 Thompson sampling based action selection

Definition 2 (Thompson sampling) Thompson sampling
stochastically selects an action based on its posterior
probability of being optimal. Formally, in Bayesian settings,
action a is chosen with probability:

P(a) =
∫
1

[
a=argmax

a′
E [Xa′ | θa′]

] ∏
a′

Pa′(θa′ | Z) dθ ,

(22)

where θa is the hidden parameter (or a set of hidden
parameters) specifying the underlying reward distribution of
applying a (i.e., the distribution of Xa), θ = (θa1 , θa2 , . . .)

is a vector of parameters for all actions, and E[Xa | θa] =∫
xLa(x | θa)dx is the expectation of Xa given θa .
Thompson sampling can efficiently be approached by

sampling method. To this end, a set of parameters θa is
sampled according to the posterior distributions Pa(θa | Z)

for each a ∈ A, and the action with the highest expectation
is finally selected, namely:

a∗ = argmax
a

E[Xa | θa]. (23)

In DNG-MCTS, we use Thompson sampling to guide
the action selection at each decision node of the search
tree. More precisely, at decision node s, let s′ be
the possible next state after executing an action a.
We sample the mean μs′ and the mixture weights
ws,a,s′ according to NormalGamma(μs′,0, λs′, αs′ , βs′)
and Dirichlet (ρs,a) respectively. The sampled action-
value Q̃(s, a) is approximated as:

Q̃(s, a) = R(s, a) + γ
∑
s′∈S

ws,a,s′μs′ . (24)

The action with the highest Q̃ value is then selected to
perform by simulation.

4.4 DNG-MCTS

The main process of DNG-MCTS is outlined in Fig. 1. It
is worth noticing that the function ThompsonSampling
has a boolean parameter sampling. If sampling is true,

A. Bai et al.

Fig. 1 Dirichlet-NormalGamma
based Monte Carlo tree search

Thompson sampling method is used to select the best action
as explained in Section 4.3, otherwise a greedy action with
the highest mean action-value Q̄(s, a) is returned, where:

Q̄(s, a) = R(s, a) + γ
∑
s′∈S

ρs,a,s′∑
s′′∈S ρs,a,s′′

μs′,0. (25)

At each iteration, the DNG-MCTS function applies
Thompson sampling to recursively select actions to be
executed by simulation from the root node to leaf nodes
through the existing search tree T. It inserts each newly
visited node into the tree, plays a default rollout policy
from the new node, and propagates the simulated outcome
to update the hyper-parameters for visited states and
actions. The OnlinePlanning function is the overall
procedure interacting with the real environment. It is called
with current state s, and search tree T initially empty.
It repeatedly calls the DNG-MCTS function until some
resource budgets are reached (e.g., the computation is
timeout or the maximal number of iterations is reached).
A greedy action to be performed in the environment
is returned to the agent finally. Notice that the rollout

policy is only played once for each new node at each
iteration, the set of past observations Z in the algorithm has
size n = 1.

5 Posterior sampling basedMonte Carlo
planning for POMDPs

In this section, we present the Bayesian posterior sampling
algorithm for Monte Carlo planning in POMDPs, namely
D2NG-POMCP.

5.1 Assumptions

Suppose a POMDP agent following policy π is interacting
with the environment, we treat 〈s, b〉 as a joint state, where
s is the true state of the whole environment (including
the agent) and b is the internal belief state of the agent.
Let J = S × B be the joint space of the state
space S and the belief space B, the stochastic process
of the joint state reduces to a Markov chain {〈st , bt 〉}

Posterior sampling for Monte Carlo planning under uncertainty

defined over the joint space J , with the transition function
being:

P
(〈s′, b′〉 | 〈s, b〉) = T

(
s ′ | s, π(b)

)
T + (

b′ | b, π(b)
)
.

(26)

Let Xb,a be a random variable denoting the immediate
reward of performing action a in belief state b, let Xs,b,π

be a random variable that denotes the cumulative reward
of following policy π from joint state 〈s, b〉, and let Xb,π

be a random variable denoting the cumulative reward of
following policy π from belief state b. Our assumptions are:

Assumption 3 Xb,a is following a Multinomial distribu-
tion.

Assumption 4 Xs,b,π is following a Normal distribution.

Assumption 5 Xb,π is following a mixture of Normal
distributions.

We assume a discrete and finite set of possible
immediate rewards in a POMDP, suppose the set is
I = {r1, r2, . . . , rk}, where ri = R(s, a) represents the
immediate reward of taking action a in state s which
is hidden. It is then easy to see that Xb,a follows a
Multinomial distribution (also known as a categorical
distribution), denoted by Multinomial(p1, p2, . . . , pk) ,
such that

∑k
i=1 pi = 1, with pi = ∑

s∈S 1[R(s, a) =
ri]b(s) being the probability of Xb,a = ri [35].

In POMDPs, the sub-space reachable from the initial
belief state b0 is countable, since each combination of
historical action-observation pairs determines uniquely a
resulting belief state, and the history space is naturally
countable in lexicographic order. Therefore, the reachable
sub-space from 〈s0, b0〉 is also countable, since the state
space is countable by definition. For finite horizon POMDPs
with planning horizon H , if γ = 1, Xs0,b0,π =∑H

t=0 R(st , π(bt)) can be seen as a sum of f (st , bt) =
R(st , π(bt)). Suppose the resulting chain {〈st , bt 〉} is
ergodic, according to Corollary 1, we claim that Xs0,b0,π

is approximately normally distributed for each 〈s0, b0〉 ∈
J , if H is sufficiently large. On the other hand, if γ
=
1, but is close to 1, it is also reasonable to approximate
Xs0,b0,π as a Normal distribution, if H is sufficiently large.
The cumulative reward of following π starting from belief
b is completely determined in the reduced Markov chain
provided with a stochastically sampled initial state s, i.e.,
Xb,π = Xs,b,π . Hence the p.d.f. of Xb,π can be expressed
as a convex combination of p.d.f.’s of Xs,b,π by definition:

fXb,π
(x) =

∑
s∈S

b(s)fXs,b,π
(x). (27)

It is then straightforward to model the distribution of Xb,π

as a mixture of Normal distributions, if Xs,b,π is assumed to
be normally distributed for all 〈s, b〉 ∈ J .

In the case if the policy π is not fixed and changes over
time, e.g., the derived policy of an online algorithm before it
converges, the real distribution of Xb,π is actually unknown
and could be some kind of very complex distribution.
However, if the algorithm is guaranteed to converge at
infinity, it is then convenient and reasonable to approximate
Xb,π as a mixture of Normal distributions.

5.2 Bayesianmodeling and inference

Assumption 3 implies that it suffices to model the
distribution of Xb,a as a Multinomial likelihood with
unknown weights: Xb,a ∼ Multinomial(p1, p2, . . . , pk).
A natural representation on these unknown weights is via
Dirichlet distributions, since Dirichlet distribution is the
conjugate prior of a Multinomial distribution. For belief
state b and action a, the prior distribution of pi is modeled as
a Dirichlet distribution, denoted byDirichlet (ψb,a), where
ψb,a = (ψb,a,r1 , ψb,a,r2 , . . . , ψb,a,rk) is a vector of hyper-
parameters. After observing an immediate reward r , the
posterior distribution is also a Dirichlet, which is updated
as:

ψb,a,r ← ψb,a,r + 1. (28)

According to Assumption 4, we model the distribu-
tion of Xs,b,π using a Normal likelihood N (μs,b, 1/τs,b)

with unknown mean μs,b and precision τs,b. By
choosing a NormalGamma distribution as a conju-
gate prior, the posterior distribution of (μs,b, τs,b)

follows also a NormalGamma distribution, such that
(μs,b, τs,b) ∼ NormalGamma(μs,b,0, λs,b, αs,b, βs,b),
where μs,b,0, λs,b, αs,b, and βs,b are the hyper-parameters.

As explained in Assumption 5, Xb,π follows a mixture
of Normal distributions, which can be easily modeled as a
convex combination of b(s) and Xs,b,π for s ∈ S. Now
consider the cumulative reward of first performing action a

in belief b and then following policy π thereafter, denoted
by Xb,a,π . According to the definition,

Xb,a,π = Xb,a + γXb′,π , (29)

where b′ is the next belief distributed according to T +(b′ |
b, a). It is difficult to explicitly describe the distribution
of Xb,a,π . However, it is rather easy to compute the
expectation, expressed as:

E[Xb,a,π] = E[Xb,a] + γ
∑
b′∈B

E[Xb′,π]T +(b′ | b, a)

= E[Xb,a] + γ
∑
o∈O

1[b′ = ζ(b, a, o)]�(o | b, a)

E[Xb′,π]. (30)

A. Bai et al.

In fact, if the underlying transition and observation
functions are known, E[Xb,a,π] is usually defined as the Q

action-value:

Qπ(b, a) = r(b, a) + γ
∑
o∈O

�(o | b, a)V π(ζ(b, a, o)).

(31)

Recall that in our assumptions, Xb,a follows a Multi-
nomial distribution, and Xb′,π follows a mixture of Nor-
mal distributions. The question turns to be how to model
the previously unknown observation model — �(· |
b, a). Fortunately, �(· | b, a) can be easily inferred in
Bayesian settings by introducing a Dirichlet distribution
as the conjugate prior, denoted by Dirichlet (ρb,a), where
ρb,a = (ρb,a,o1 , ρb,a,o2, . . .) are the hyper-parameters.
After observing a transition (b, a) → o, the posterior
distribution of �(· | b, a) is updating as:

ρb,a,o ← ρb,a,o + 1. (32)

Therefore, to compute the expectation of the posterior
distribution of Xb,a,π , we only need to maintain a set of
hyper-parameters 〈μs,b,0, λs,b, αs,b, βs,b〉, ψb,a and ρb,a for
each state s, belief state b and action a encountered in the
MCTS search tree, and update them by using Bayes’ rule.

5.3 Thompson sampling based action selection

In D2NG-POMCP, we use Thompson sampling to guide
the action section at each decision node. More precisely, at
the decision node associated with belief state b, to compute
the expectation of Xb,a,π , we sample wb,a,o for o ∈ O

according to Dirichlet (ρb,a), wb,a,r for r ∈ I according
to Dirichlet (ψb,a), and μs′,b′ for 〈s′, b′〉 ∈ J according to
NormalGamma(μs′,b′,0, λs′,b′, αs′,b′ , βs′,b′), where b′ =
ζ(b, a, o) is the next belief after having performed action a

and obtained observation o in belief b. Finally, the action
with the highest sampled action-value Q̃(b, a) is selected,
where:

Q̃(b, a) =
∑
r∈I

wb,a,r r + γ
∑
o∈O

1[b′

= ζ(b, a, o)]wb,a,o

∑
s′∈S

μs′,b′b′(s′). (33)

5.4 D2NG-POMCP

The main process of D2NG-POMCP is outlined in Fig. 2.
As aforementioned, our algorithm is implemented on basis
of histories instead of explicit beliefs. Given an initial belief,
a history h uniquely determines the resulting belief, thus we
maintain a set of hyper-parameters 〈μs,h,0, λs,h, αs,h, βs,h〉,
ψh,a and ρh,a for each state s, history h and action a

encountered in the MCTS search tree. Hence each node of

the search tree is represented by a history h. Specifically, we
use particles, denoted by P(h), to represent the respective
belief state of history h, which are updated using a particle
filter. Expressed in histories, (33) turns out to be:

Q̃(h, a) =
∑
r∈I

wh,a,r r + γ
∑
o∈O

wh,a,o

∑
s′∈P(hao)

μs′,hao,

(34)

where wh,a,r , wh,a,o and μs′,hao are sampled ran-
domly according to Dirichlet (ψh,a), Dirichlet (ρh,a) and
NormalGamma(μs′,hao,0, λs′,hao, αs′,hao, βs′,hao) respec-
tively. When the search process ended at the root of tree, a
greedy action with the highest mean action-value Q̄(h, a) is
selected, where:

Q̄(h, a) =
∑
r∈I

ψh,a,r∑
r ′∈I ψh,a,r ′

r

+γ
∑
o∈O

ρh,a,o∑
o′∈O ρh,a,o′

∑
s′∈P(hao)

μs,hao,0. (35)

At each iteration, the D2NG-POMCP function applies
Thompson sampling to recursively select actions to be
executed by simulation from the root node to leaf nodes
through the existing search tree T. It inserts each newly
visited node into the tree, plays a default rollout policy from
the new node, and propagates the simulated outcome to
update the hyper-parameters for visited histories, states and
actions. The OnlinePlanning function is called with
current history h and a search tree T initially empty. It
repeatedly samples a state from the current belief P(h), and
performs the search process by calling the D2NG-POMCP
function until some resource budgets are reached (e.g.,
the computation times out or the maximal number of
iterations is reached). Then a greedy action to be performed
in the environment is returned to the agent. The Agent
function is the overall procedure interacting with the real
environment. It calls OnlinePlanning to select the
planned best action, execute the action, get an observation,
and update particles by calling the ParticleFilter
function repeatedly until some terminating conditions are
satisfied (e.g., the problem is solved or the maximal running
time is reached).

6 Discussion

In this section, we discuss on the advantage of using
a simulator, how to choose the prior distributions by
initializing hyper-parameters in DNG-MCTS and D2NG-
POMCP, and the convergence property of the algorithms.

Posterior sampling for Monte Carlo planning under uncertainty

Fig. 2 Dirichlet-Dirichlet-
NormalGamma based partially
observable Monte Carlo planing

6.1 Use of simulator

The advantage of using a simulator is that a simulator
is much more easy to implement and scale than an
explicit model of the environment which has to be
described as a table of precise probability density/mass
functions for each state (i.e. the full transition and/or
observation functions in analytic forms). For example,
suppose in an idealized environment the state can be
described by a scalar variable x ∈ (−∞, ∞). After
performing an action a ∈ [0, 1], which is another scalar
variable, the next state x′ is uncertain, but follows a

distribution such that x′ ∼ Unif orm(x − Unif orm(a −
Unif orm(0, 1), a + Unif orm(0, 1)), x + Unif orm(a −
Unif orm(0, 1), a + Unif orm(0, 1)), governed by the
environment’s own dynamics, whereUnif orm(a, b) stands
for a uniform distribution over range [a, b]. Following the
MDP formalization, the explicit transition function of this
environment in the form of a probability density function
is f (x ′) = T (x′ | x, a). The distribution f (x′) seems
to be trivial, but is actually hard to obtain, as it relates
to several layers of nested samplings. On the other hand,
it is rather easy to implement/describe the environment as
a simulator. What we need are the rules of sampling x′

A. Bai et al.

conditioned on x and a — which we already have. It is
easy to see that in more complex environments, as shown
in this paper, the advantage of using simulator instead of
fully specified explicit representations becomes more clear.
As the environment becomes complex when more state and
action variables are involved, it is extremely difficult or
even impossible to maintain the environment’s dynamics as
explicit distribution functions. But we can always describe
the environment as a set of sampling rules — which
significantly ease the work of modeling the environment.
Furthermore, the simulator doesn’t have to be extremely
precise. An approximated model of the environment in
terms of prior probabilities will suffice. The agent (either
modeled as an MDP agent or a POMDP agent) will operate
in the abstracted state space inducted by the simulator and
keep updating as up-to-date information becomes available.
In the case of MDP, the agent act optimally consistent with
the simulator assuming that the abstracted/approximated
environment model exposed by the simulator is the ground-
truth environment; in the case of POMDP, the agent
performs real-time Bayesian update conditioned on some
prior probabilities and history of observations (in various
forms, e.g. particle filtering as in this paper).

6.2 Prior distribution

While the impact of the prior tends to be negligible in the
limit, its choice is important especially when only a small
amount of data has been observed. In general, priors should
reflect available knowledge of the hidden model.

In the absence of any knowledge, uninformative priors
may be preferred [44]. According to the principle of
indifference, uninformative priors assign equal probabilities
to all possibilities. For NormalGamma priors, we hope
that the sampled distribution of μ given τ : N (μ0, 1/(λτ)),
is as flat as possible. This implies an infinite variance
1/(λτ) → ∞, so that λτ → 0. Recall that τ follows
a Gamma distribution Gamma(α, β) with expectation
E[τ] = α/β, so we have expectedly λα/β → 0. Taking
into consideration the parameter space (λ > 0, α ≥
1, β ≥ 0), we can choose λ small enough, α = 1 and
β sufficiently large to approximate this condition. Second,
we hope the sampled distribution is in the middle of axis,
so μ0 = 0 seems to be a good selection. It is worth
noting that intuitively β should not be set too large, or the
convergence process may be very slow. For Dirichlet priors,
it is common to set the hyper-parameters as small positives
to have uninformative priors.

On the other hand, if some prior knowledge is available,
informative priors make more sense. Take DNG-MCTS
as an example. By exploiting domain knowledge, a
state node can be initialized with informative priors
indicating its priority over other states. In DNG-MCTS,

this is done by initializing the hyper-parameters based
on subjective estimation of states. For NormalGamma
priors, the interpretation of hyper-parameters in terms
of pseudo-observations says that if one has a prior
mean of μ0 from λ samples and a prior precision of
α/β from 2α samples, the prior distribution over μ

and τ is NormalGamma(μ0, λ, α, β) [28], providing a
straightforward way to initialize the hyper-parameters if
some prior knowledge (such as historical data of past
observations) is available. Specifying detailed priors based
on prior knowledge for particular domains is beyond the
scope of this paper. The ability to include prior information
provides important flexibility and can be considered an
advantage of the approach.

6.3 Convergence

For Thompson sampling in stationary MABs (i.e., the
underlying reward function does not change), Agrawal et
al. [2] have shown that: 1) the probability of selecting
any suboptimal action a at the current step is bounded
by a linear function of the probability of selecting the
optimal action; 2) the coefficient in this linear function
decreases exponentially fast with the increase in the number
of selections of optimal action. Thus, the probability of
selecting the optimal action in an MAB is guaranteed to
converge to 1 in the limit using Thompson sampling.

Take DNG-MCTS as an example. In our settings, the
distribution of Xs,π is determined by the transition function
and the Q values given the policy π . When the Q values
converge, the distribution of Xs,π becomes stationary with
the optimal policy. For the leaf nodes (level H) of the search
tree, Thompson sampling will converge to the optimal
actions with probability 1 in the limit since the MABs are
stationary in terms of the default rollout policy. When all
the leaf nodes converge, the distributions of return values
from them will not change. So the MABs of the nodes in
level H − 1 become stationary as well. Thus, Thompson
sampling will also converge to the optimal actions for nodes
in level H − 1. Recursively, this holds for all the upper-
level nodes. Therefore, we conclude that DNG-MCTS can
find the optimal policy in the search tree for the root node
with respect to the default rollout policy if unbounded
computational resources are given. We have similar results
for D2NG-POMCP. To conclude, DNG-MCTS and D2NG-
POMCP converge to find the optimal policy given maximal
planning horizon H and the default rollout policies.

7 Experiments

We empirically illustrate our motivation by comparing
Thompson sampling with other common algorithms in

Posterior sampling for Monte Carlo planning under uncertainty

MABs. We have also evaluated DNG-MCTS and D2NG-
POMCP on various benchmark problems.

7.1 MAB experiments

We compared Thompson sampling in terms of simple
regret with other common algorithms in MABs, including
RoundRobin, Randomized, 0.5-Greedy and UCB1. The
RoundRobin algorithm selects an arm in a round-robin
fashion among all arms [31]; the Randomized algorithm
uniformly selects a random arm; the 0.5-Greedy algorithm
selects the best seen arm with probability 0.5, and a
random arm otherwise [77]; the UCB1 algorithm selects
the arm that maximizes the UCB1 heuristic. In our
experiments, each arm returns a random reward sampled
from a Bernoulli distribution; UCB1 is implemented with
exploration constant

√
2; Thompson sampling chooses

Beta distributions as the conjugate priors, initialized as
(α = 1, β = 1). We ran each algorithm over 10,000
experiments of randomly generated instances for different
numbers of arms, and reported the average simple regret
as shown in Fig. 3. It can be seen from the results that
Thompson sampling yields lower simple regret, particularly
for larger action space. It is well known that Thompson
sampling theoretically achieves logarithmic optimal and
empirically performs well in terms of cumulative regret

in MABs. To the best of our knowledge, it is observed
for the first time in the literature that Thompson sampling
empirically outperforms other common algorithms in terms
of simple regret also, providing a potential of success
of applying Thompson sampling to Monte Carlo planing
domains.

7.2 MDP experiments

We have tested the DNG-MCTS algorithm and compared
the results with UCT in three common MDP benchmark
domains, namely Canadian traveler problem, racetrack and
sailing.

These problems are modeled as cost-based MDPs. That
is, a cost function c(s, a) is used instead of the reward
function R(s, a), and the min operator is used in the
Bellman equation instead of the max operator. Similarly, the
objective of solving a cost-based MDPs is to find an optimal
policy that minimizes the expected cumulative cost for each
state. Notice that algorithms developed for reward-based
MDPs can be straightforwardly transformed and applied to
cost-based MDPs by simply using the min operator instead
of max in the Bellman update routines. Accordingly, the min
operator is used in the function ThompsonSampling of
the transformed DNG-MCTS algorithm. We implemented
our codes and conducted the experiments on the basis of

Fig. 3 Performance of
Thompson sampling in terms of
simple regret in MABs

A. Bai et al.

Table 1 CTP problems with 20 nodes

Domain-specific UCT Random rollout policy Optimistic rollout policy

Prob. Belief UCTB UCTO UCT DNG UCT DNG

20-1 20 3
49

210.7 7 169.0 6 216.4 3 223.9 4 180.7 3 177.1 3

20-2 20 3
49

176.4 4 148.9 3 178.5 2 178.1 2 160.8 2 155.2 2

20-3 20 3
51

150.7 7 132.5 6 169.7 4 159.5 4 144.3 3 140.1 3

20-4 20 3
49

264.8 9 235.2 7 264.1 4 266.8 4 238.3 3 242.7 4

20-5 20 3
52

123.2 7 111.3 5 139.8 4 133.4 4 123.9 3 122.1 3

20-6 20 3
49

165.4 6 133.1 3 178.0 3 169.8 3 167.8 2 141.9 2

20-7 20 3
50

191.6 6 148.2 4 211.8 3 214.9 4 174.1 2 166.1 3

20-8 20 3
51

160.1 7 134.5 5 218.5 4 202.3 4 152.3 3 151.4 3

20-9 20 3
50

235.2 6 173.9 4 251.9 3 246.0 3 185.2 2 180.4 2

20-10 20 3
49

180.8 7 167.0 5 185.7 3 188.9 4 178.5 3 170.5 3

9.8581latoT 1553.6 2014.4 1983.68 1705.9 1647.4

The second column indicates the belief size of the transformed MDP for each problem instance. UCTB and UCTO are the two domain-specific
UCT implementations [30]. DNG-MCTS and UCT run for 10,000 iterations. Boldface fonts are best in whole table; gray cells show best among
domain-independent implementations for each group. The data of UCTB, UCTO and UCT are taken form [19]

MDP-engine — a software package with a collection of
problem instances and basic algorithms for MDPs.4

In each benchmark problem, we (1) ran the transformed
algorithms for a number of iterations from the current state,
(2) applied the best action based on the resulting action-
values, (3) repeated the loop until terminating conditions
(e.g., a goal state is satisfied or the maximal number
of running steps is reached), and (4) reported the total
discounted cost. The performance of algorithms is evaluated
by the average value of total discounted costs over 1,000
independent runs. In all experiments, (μs,0, λs, αs, βs) is
initialized to (0, 0.01, 1, 100), and ρs,a,s′ is initialized to
0.01 for all s ∈ S, a ∈ A and s′ ∈ S. For fair comparisons,
we also use the same settings as in [19]: for each decision
node, (1) only applicable actions are selected, (2) applicable
actions are forced to be selected once before any of them
are selected twice or more, and 3) the exploration constant
for the UCT algorithm is set to be the current mean action-
values Q(s, a, d).

The Canadian traveler problem (CTP) is a path finding
problem with imperfect information over a graph whose
edges may be blocked with given prior probabilities [60].
A CTP can be modeled as a deterministic POMDP, i.e.,
the only source of uncertainty is the initial belief. When
transformed to anMDP, the size of the belief space is n×3m,
where n is the number of nodes and m is the number of
edges. This problem has a discount factor γ = 1. The aim
is to navigate to the goal state as quickly as possible. It has
recently been addressed by an anytime variation of AO*,

4https://code.google.com/p/mdp-engine/

named AOT [19], and two domain-specific implementations
of UCT which take advantage of the specific MDP structure
of the CTP and use a more informed base policy, named
UCTB and UCTO [30]. In this experiment, we used the
same 10 problem instances with 20 nodes as done in their
papers.

When running DNG-MCTS and UCT in those CTP
instances, the number of iterations for each decision-making
was set to be 10,000, which is identical to [19]. Two types
of default rollout policy were tested: the random policy that
selects actions with equal probabilities and the optimistic
policy that assumes traversability for unknown edges and
selects actions according to estimated cost. The results
are shown in Table 1. Similar to [19], we included the
results of UCTB and UCTO as a reference. From the table,
we can see that DNG-MCTS outperformed the domain-
independent version of UCT with random rollout policy in
several instances, and particularly performed much better
than UCT with optimistic rollout policy. Although DNG-
MCTS is not as good as domain-specific UCTO, it is
competitive comparing to the general UCT algorithm in this
domain.

The racetrack problem simulates a car race [15], where a
car starts in a set of initial states and moves towards the goal.
At each time step, the car can choose to accelerate to one of
the eight directions. When moving, the car has a possibility
of 0.9 to succeed and 0.1 to fail on its acceleration. We
tested DNG-MCTS and UCT with random rollout policy
and planning horizon H = 100 in the instance of barto-
big, which has a state space with size |s| = 22534. The
discount factor is γ = 0.95 and the optimal cost produced

https://code.google.com/p/mdp-engine/

Posterior sampling for Monte Carlo planning under uncertainty

is known to be 21.38. We report the curves of the average
cost as a function of the number of iterations and average
computation time per action respectively in Fig. 4a and
b. Each data point in the figure was averaged over 1,000
runs, each of which was allowed for running at most 100
steps. It can be seen from the figure that DNG-MCTS
converges faster than UCT in terms of number of iterations,
and achieves similar results in terms of average computation
time per action.

The sailing domain is adopted from [52]. In this domain,
a sailboat navigates to a destination on an 8-connected grid.
The direction of the wind changes over time according
to prior transition probabilities. The goal is to reach the
destination as quickly as possible, by choosing at each grid
location a neighbour location to move to. The discount
factor in this domain is γ = 0.95 and the maximum
planning horizon is set to be H = 100. We ran DNG-MCTS
and UCT with random rollout policy in a 100×100 instance
of this domain. This instance has 80,000 states and the
optimal cost is 26.08. The experimental results are shown
in Figs. 4c and d. A trend similar to the racetrack problem
can be observed in the graph: DNG-MCTS converges faster
than UCT in terms of sample complexity.

We also develop an extended Taxi domain to test our
algorithm more thoroughly. The original Taxi domain is a
common benchmark problem for MDPs [29]. It consists

of a 5 × 5 grid world with walls and 4 taxi terminals: R,
G, Y and B. The goal of a taxi agent is to pick up and
deliver a passenger. The system has 4 state variables: the
agent’s coordination x and y, the pickup location pl, and the
destination dl. The variable pl can be one of the 4 terminals,
or just taxi if the passenger is inside the taxi. The variable
dl must be one of the 4 terminals. At the beginning of
each episode, the taxi’s location, the passenger’s location
and the passenger’s destination are all randomly generated.
The problem terminates when the taxi agent successfully
delivers a passenger. There are 6 primitive actions: a) 4
navigation actions that move the agent one grid: North,
South, East and West; b) the Pickup action; and c) the
Putdown action. Each navigation action has the probability
of 0.8 to move the agent in the indicated direction, and
0.1 for each perpendicular direction. Each action has a cost
of -1, and the agent received a reward of +20 when the
episode terminates with the Putdown action and a penalty of
-10 for illegal Pickup and Putdown actions. In the extended
version with size n (i.e., eTaxi[n]), the grid world size is
n × n. The four stops R, G, Y and B, are at positions (0, 0),
(0, n − 1), (n − 2, 0) and (n − 1, n − 1) respectively. There
are three walls each with length �n−1

2 � started at position
in between (0, 0) and (1, 0), (1, n − 1) and (2, n − 1), and
(n − 3, 0) and (n − 2, 0) respectively. The action space, and
transition and reward models remain the same as the Taxi

Fig. 4 Performance comparison
on Racetrack and Sailing

A. Bai et al.

Fig. 5 Performance comparison
on eTaxi domain

domain. Thus, if n = 5, eTaxi[n] reduces to the original Taxi
problem.

We compared DNG-MCTS with LRTDP [18], AOT [19]
and UCT. In the field of online planning for MDPs, the
real-time dynamic programming (RTDP) algorithm [15] is
among the first that tries to find the “best” action for the
current state by conducting a trial-based search process with
greedy action selection and an admissible heuristic. The
labeled RTDP (LRTDP) algorithm introduces a labelling
scheme into RTDP that speeds up its convergence while
retaining its good anytime behavior. AO* [43] builds an
optimal solution graph with respect to the AND-OR graph
by greedily expanding tip nodes in the current best partial
solution graph and assigning values to new nodes according
to an admissible heuristic function. The anytime AO* (AOT)
algorithm implements AO* in an anytime manner retaining
the same optimality and worst case complexity as AO*.
Notice that, LRTDP and AOT are not in Monte Carlo
settings, that is to say they have full accesses to the
underlying MDP models. A min-min heuristic [18] is used
to initialize new nodes in LRTDP and AOT, and a min-min
heuristic based greedy policy is used as the base policy for
UCT and DNG-MCTS. In the experiments, we ran each
algorithm with randomly selected initial states, and reported
the return (cumulative reward) and the overall time usage.
The number of iterations for each action-selection is set to
be 100. The maximal search depth is 100. We conducted

Table 2 Empirical results in eTaxi[5]

Algorithm Runs Avg. Reward Avg. Time usage (ms)

LRTDP 1000 3.71 ± 0.15 64.88 ± 3.71

AOT 1000 3.80 ± 0.16 41.26 ± 2.37

UCT 1000 −23.10 ± 0.84 102.20 ± 4.24

DNG-MCTS 1000 −3.13 ± 0.29 213.85 ± 4.75

The upper bound of Average Reward is 4.01 ± 0.15

the experiments over different sizes of eTaxi ranging from
n = 5 to 15. The average returns and time usages over
1,000 runs are reported in Fig. 5a and b. Detailed results
in eTaxi[5] is shown in Table 2. It can be seen from the
results that DNG-MCTS performs much better than UCT,
while producing competitive results comparing to LRTDP
and AOTwith regard to average cumulative rewards in eTaxi
domain. We also notice that DNG-MCTS does require more
computation time comparing to other algorithms, this is due
to the time consuming operation of sampling from variety
of distributions.

7.3 POMDP experiments

We have also examined D2NG-POMCP and compared
the results with POMCP in RockSample and PocMan
domains. We implemented the algorithm and conducted
the experiments based on POMCP — a software package
implementing the POMCP algorithm with some benchmark
problems.5

For each problem instance, we 1) ran the algorithms for a
number of iterations from the current history, 2) applied the
best action based on the resulting action-values, 3) repeated
the loop until terminating conditions, and 4) reported
the total discounted reward and the average computation
time per action selected. The performance of algorithms
is evaluated by the average total discounted reward over
1,000 independent runs. In all experiments, we initialized
(μs,h,0, λs,h, αs,h, βs,h) to (0, 0.01, 1, 100), ψh,a,r to 0.01,
and ρh,a,o to 0.01 for all s ∈ S, a ∈ A, r ∈ I, o ∈ O

and encountered history h in the search tree. When testing
D2NG-POMCP and POMCP, we used the same preferred
actions based rollout policy as described and implemented
in [70] and POMCP respectively. For fair comparisons,
we also applied the same settings as in POMCP: for each
decision node, 1) only applicable actions are selected, and

5http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Applications.html

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Applications.html

Posterior sampling for Monte Carlo planning under uncertainty

2) applicable actions are forced to be selected once before
any of them is selected twice.

The RockSample[n, k] problem simulates a robot explor-
ing in a n × n grid map containing k rocks. The goal is to
determine which rocks are valuable, collect valuable ones
as much as possible and exit from the map finally. There are
three kinds of actions, namely moving, checking and sam-
pling. The moving action specified with a direction param-
eter enables the agent to move in the map; the sampling
action collects a rock; and, the checking action observes a
rock to noisily identify whether it is valuable or not. Sam-
pling a valuable rock yields a reward of +10; sampling an
invaluable rock yields a reward of −10; and, moving into

the exit area yields a reward of +10. All other actions have
no cost or reward. The discount factor γ is 0.95. Empiri-
cal results are depicted in Fig. 6. Each data point shows the
average result over 1,000 runs or at most 12 hours of total
computation. The three figures in the left column depict
the performance with respect to number of iterations; the
three figures in the right column depict the performance
with respect to average time per action. Number of iterations
is the total number of calls to D2NG-POMCP allowed for
each decision of action in the OnlinePlanning function;
average time per action is the average computation time for
each action selected in the OnlinePlanning function.
We can see from the results that D2NG-POMCP converges

Fig. 6 Performance comparison
on RockSample

A. Bai et al.

Table 3 Comparison of D2NG-POMCP with existing approaches in
RockSample problems evaluated by discounted cumulative reward

RockSample [7, 8] [11,11] [15,15]

States |s| 12,544 247,808 7,372,800

AEMS2 21.37 ± 0.22 N/A N/A

HSVI-BFS 21.46 ± 0.22 N/A N/A

SARSOP 21.39 ± 0.01 21.56 ± 0.11 N/A

POMCP 20.71 ± 0.21 20.01 ± 0.23 15.32 ± 0.28

D2NG-POMCP 20.87 ± 0.20 21.44 ± 0.21 20.20 ± 0.24

faster than POMCP in terms of number of iterations, and
appears to be competitive with POMCP in terms of average
time per action.

Table 3 presents the comparison of D2NG-POMCP
with prior work, including AEMS2 [65], HSVI-BFS
[66, 71], SARSOP [54] and POMCP [70]. AEMS2
and HSVI-BFS are online algorithms; SARSOP is an
offline algorithm. They are all provided with full factored
representations of the underlying problems. AEMS2 and
HSVI-BFS used knowledge computed offline by PBVI [63];
empirical results are taken from [66]. SARSOP was given
approximately 1,000 seconds of offline computation; results
are taken from [54]. POMCP and D2NG-POMCP used the
same informed rollout policy. The results of POMCP are
taken from [70]. Each online algorithm was given exactly
1 second per action. Performance is evaluated by average
discounted return over 1,000 runs or at most 12 hours of
total computation. The results indicate that D2NG-POMCP
is able to provide competitive results on RockSample[7, 8]
and RockSample[11, 11], and advanced POMCP with much
better return on RockSample[15, 15].

The PocMan problem is firstly introduced in [70]. The
PocMan agent navigates in a 17 × 19 maze, while trying
to eat some randomly distributed food pellets and power
pills. Four ghost agents roam the maze, according to a given
stochastic strategy. The PocMan agent dies if it touches
any ghost, unless it has eaten any power pills within the
last 15 time steps. It receives a reward of −1 at each

step, +10 for each food pellet, +25 for eating a ghost
and −100 for dying. A 10-bit observation is observed
at every time step, corresponding to the PocMan agent’s
senses of sight, hearing, touch and smell. The PocMan
problem has approximately 1,056 states, 4 actions, and
1,024 observations. The discount factor γ is 0.95. The
performance of D2NG-POMCP in PocMan evaluated by
average discounted return is shown in Fig. 7. Each data
point shows the average result over 1,000 runs or at
most 12 hours of total computation. It is worth noticing
that the algorithm’s performance in PocMan experiment is
evaluated by average discounted return, instead of average
undiscounted return as in the original paper [70]. We
believe that using average discounted return to show the
performance is more reasonable, since average discounted
return is what the algorithms really intent to optimize.
To provide a more comprehensive view, we also included
the respective results evaluated by average undiscounted
return in addition as shown in Fig. 8. In this domain,
D2NG-POMCP performs much better than POMCP with
regard to both number of iterations and average time per
action.

7.4 Discussion on computational complexity

Regarding computational complexity, although the total
computation time of DNG-MCTS and D2NG-POMCP is
linear with the total number of simulations, which is at
most width × depth (where width is the number of
iterations and depth is the maximal planning horizon),
our approaches do require more computation than UCT
and POMCP, due to the time consuming operations of
samplings from various distributions when performing
Thompson sampling. However, if the simulations are
expensive (e.g., computational physics in 3D environment
or stochastic environment with multiple agents where the
cost of executing the simulation steps greatly exceeds the
time needed by action-selection steps in MCTS), DNG-
MCTS and D2NG-POMCP can obtain better performances
in terms of computational complexity, because they are

Fig. 7 Performance of D2NG-
POMCP in PocMan evaluated
by average discounted returns

Posterior sampling for Monte Carlo planning under uncertainty

Fig. 8 Performance of D2NG-
POMCP in PocMan evaluated
by average undiscounted returns

expected to have lower sample complexities (for example,
as confirmed in the PocMan experiments).

8 Conclusion

In this paper, we propose the DNG-MCTS and D2NG-
POMCP algorithms which reply on Thompson sampling for
online Monte Carlo planning for MDPs and POMDPs. The
basic idea is to model the uncertainty of the cumulative
reward returned by taking an action in the Monte Carlo
search tree as a combination of mixture distributions, infer
the posterior distribution using Bayesian method, and use
Thomson sampling to guide the action-selection strategy.
We show that the proposed algorithms are guaranteed to
converge to the optimal policy in the limit. Experimental
results in MDPs confirm that, comparing with the general
UCT algorithm, DNG-MCTS produces competitive results
in the CTP domain, and converges faster in the domains
of racetrack and sailing. We also show that DNG-MCTS
outperforms significantly other popular online planning
algorithms (including RTDP, AOT and UCT) on the eTaxi
domain which requires complex behaviors. Experimental
results in POMDPs show that D2NG-POMCP outperform
the state-of-the-art algorithms (including AEMS2, HSVI-
BFS, SARSOP, and POMCP) in both RockSample and
PocMan domains. In future work, we plan to extend our
basic assumptions to more general distributions and test our
algorithm on real-world applications.

Acknowledgements Feng Wu was supported in part by National
Natural Science Foundation of China under grant No. 61603368,
the Youth Innovation Promotion Association of CAS (No. 2015373),
and Natural Science Foundation of Anhui Province under grant No.
1608085QF134. Aijun Bai was supported in part by the National
Research Foundation for the Doctoral Program of China under grant
20133402110026, the National Hi-Tech Project of China under grant
2008AA01Z150 and the Natural Science Foundation of China under
grant 60745002 and 61175057. We are grateful to the reviewers for
their constructive comments and suggestions.

References

1. Agrawal S, Goyal N (2012) Analysis of thompson sampling for the
multi-armed bandit problem. In: Conference on learning theory,
pp 39.1–39.26

2. Agrawal S, Goyal N (2013) Further optimal regret bounds for
Thompson sampling. In: Artificial intelligence and statistics, pp
99–107

3. Anand A, Mausam GA, Singla P (2015) ASAP-UCT: Abstraction
of state-action pairs in UCT. In: Yang Q, Wooldridge M (eds)
IJCAI. AAAI Press, pp 1509–1515

4. Anand A, Mausam RN, Singla P (2016) OGA-UCT: On-the-
go abstractions in UCT. In: Coles AJ, Coles A, Edelkamp S,
Magazzeni D, Sanner S (eds) ICAPS. AAAI Press, pp 29–
37

5. Asmuth J, Littman ML (2011) Learning is planning: near Bayes-
optimal reinforcement learning via Monte-Carlo tree search. In:
Uncertainty in artificial intelligence, pp 19–26

6. Auer P (2003) Using confidence bounds for exploitation-
exploration trade-offs. J Mach Learn Res 3:397–422

7. Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis
of the multiarmed bandit problem. Mach Learn 47(2):235–
256

8. Bai A, Srivastava S, Russell S (2016) Markovian state and
action abstractions for MDPs via hierarchical MCTS. In: 25th
international joint conference on artificial intelligence (IJCAI).
New York

9. Bai A, Wu F, Chen X (2012) Online planning for large MDPs
with MAXQ decomposition (extended abstract). In: van der Hoek
W, Padgham L, Conitzer V, Winikoff M (eds) International
conference on autonomous agents and multiagent systems,
AAMAS 2012, Valencia, Spain, June 4-8, 2012 (3 volumes).
IFAAMAS, pp 1215–1216

10. Bai A, Wu F, Chen X (2013) Bayesian Mixture modelling and
inference based Thompson sampling in Monte-Carlo tree search.
In: Advances in neural information processing systems 26, pp
1646–1654

11. Bai A, Wu F, Chen X (2015) Online planning for large Markov
decision processes with hierarchical decomposition. ACM Trans
Intell Syst Technol (TIST) 6(4):45:1–45:28

12. Bai A, Wu F, Zhang Z, Chen X (2014) Thompson sampling based
Monte-Carlo planning in POMDPs. In: International conference
on automated planning and scheduling (ICAPS)

13. Barrett S, Agmon N, Hazon N, Kraus S, teammates P. Stone.
(2014) Communicating with unknown. In: Proceedings of 13th
international conference on autonomous agents and multiagent
systems (AAMAS 2012)

A. Bai et al.

14. Barrett S, Stone P, Kraus S, Rosenfeld A (2013) Teamwork
with limited knowledge of teammates. In: Proceedings of the
twenty-seventh AAAI conference on artificial intelligence

15. Barto A, Bradtke S, Singh S (1995) Learning to act using real-time
dynamic programming. Artif Intell 72(1-2):81–138

16. Bellman R (1957) Dynamic programming, 1st edn. Princeton
University Press, Princeton

17. Bertsekas DP, Castanon DA (1999) Rollout algorithms for
stochastic scheduling problems. J Heuristics 5(1):89–108

18. Bonet B, Geffner H (2003) Labeled rtdp: Improving the
convergence of real-time dynamic programming. In: International
conference on automated planning and scheduling, vol 3

19. Bonet B, Geffner H (2012) Action selection for MDPs Anytime
AO* vs. UCT. In: AAAI conference on artificial intelligence, pp
1749–1755

20. Browne C, Powley EJ, Whitehouse D, Lucas SM, Cowling PI,
Rohlfshagen P, Tavener S, Perez D, Samothrakis S, Colton S
(2012) A survey of Monte Carlo, tree search methods. IEEE Trans
Comput Intell AI Games 4(1):1–43

21. Bubeck S, Cesa-Bianchi N (2012) Regret analysis of stochastic
and nonstochastic multi-armed bandit problems. Found Trends
Mach Learn 5(1):1–122

22. Bubeck S, Munos R, Stoltz G (2011) Pure exploration in
finitely-armed and continuous-armed bandits. Theor Comput Sci
412(19):1832–1852

23. Chang HS, Givan R, Chong EK (2004) Parallel rollout for
online solution of partially observable Markov decision processes.
Discret Event Dyn Syst 14(3):309–341

24. Chapelle O, Li L (2011) An empirical evaluation of Thompson
sampling. In: Advances neural information processing systems, pp
2249–2257

25. Chaslot G, Bakkes S, Szita I, Spronck P (2008) Monte-Carlo tree
search: a new framework for game AI. In: Darken C, Mateas
M (eds) Proceedings of the fourth artificial intelligence and
interactive digital entertainment conference. The AAAI Press,
Stanford

26. DasGupta A (2008) Asymptotic theory of statistics and probabil-
ity. Springer, Berlin

27. Dearden R, Friedman N, Russell S (1998) Bayesian Q-learning.
In: AAAI conference on artificial intelligence, pp 761–768

28. DeGroot MH, Schervish MJ (2002) Probability and statistics.
Addison Wesley, Boston

29. Dietterich TG (1999) Hierarchical reinforcement learning with the
MAXQ value function decomposition. J Mach Learn Res 13(1):63

30. Eyerich P, Keller T, Helmert M (2010) High-quality policies for
the Canadian traveler’s problem. In: AAAI conference on artificial
intelligence, pp 51–58

31. Feldman Z, Domshlak C (2012) Simple regret optimization
in online planning for Markov decision processes. In: AAAI
conference on artificial intelligence

32. Feldman Z, Domshlak C (2014) On MABs and separation of
concerns in Monte-Carlo planning for MDPs. In: Chien SA, Do
MB, Fern A, Ruml W (eds) ICAPS. AAAI

33. Feng Z, Hansen E (2002) Symbolic heuristic search for factored
Markov decision processes. In: AAAI/IAAI, pp 455–460

34. Finnsson H, Björnsson Y (2008) Simulation-based approach to
general game playing. AAAI 8:259–264

35. Forbes C, Evans M (2011). In: Hastings N, Peacock B (eds)
Statistical distributions. Wiley, Nwe York

36. Gelly S, Silver D (2007) Combining online and offline knowledge
in UCT. In: Proceedings of the 24th international conference on
machine learning. ACM, pp 273–280

37. Gelly S, Silver D (2011) Monte-Carlo Tree search and rapid action
value estimation in computer Go. Artif Intell 175(11):1856–1875

38. Gopalan A, Mannor S, Mansour Y (2014) Thompson sampling for
complex online problems. In: Proceedings of the 31st international
conference on machine learning, pp 100–108

39. Gordon NJ, Salmond DJ, Smith AF (1993) Novel approach
to nonlinear/non-Gaussian bayesian state estimation. In: IEE
Proceedings F (radar and signal processing), vol 140. IET, pp 107–
113

40. Grzes M, Poupart P (2014) Pomdp planning and execution in
an augmented space. In: Proceedings of the 2014 international
conference on autonomous agents and multi-agent systems.
International Foundation for Autonomous Agents and Multiagent
Systems, pp 757–764

41. Grześ M, Poupart P, Hoey J (2013) Isomorph-free branch
and bound search for finite state controllers. In: Proceedings
of the twenty-third international joint conference on artificial
intelligence. AAAI Press, pp 2282–2290

42. Guez A, Silver D, Dayan P (2012) Efficient Bayes-adaptive
reinforcement learning using sample-based search. In: Advances
in neural information processing systems, pp 1034–1042

43. Hansen E, Zilberstein S (2001) LAO* A heuristic search algorithm
that finds solutions with loops. Artif Intell 129(1-2):35–62

44. Jaynes ET (1968) Prior probabilities. IEEE Trans Syst Sci Cybern
4(3):227–241

45. Jones GL (2004) On the Markov chain central limit theorem.
Probab Surv 1:299–320

46. Kaelbling LP, Littman ML, Cassandra AR (1998) Planning and
acting in partially observable stochastic domains. Artif Intell
101(1-2):99–134

47. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement
learning: a survey. J Artif Intell Res 4:237–285

48. Kaufmann E, Korda N, Munos R (2012) Thompson sampling An
optimal finite time analysis. In: Algorithmic Learning Theory, pp
199–213

49. Kearns M, Mansour Y, Ng A (1999) A sparse sampling algorithm
for near-optimal planning in large Markov decision processes.
In: Proceedings of the 16th international joint conference on
artificial intelligence, vol 2. Morgan Kaufmann Publishers Inc,
pp 1324–1331

50. Keller T, Eyerich P (2012) Prost: Probabilistic planning based on
UCT. In: ICAPS12

51. Keller T, Helmert M (2013) Trial-based heuristic tree search for
finite horizon MDPs. In: Proceedings of the 23rd international
conference on automated planning and scheduling (ICAPS), pp
135–143

52. Kocsis L, Szepesvári C (2006) Bandit based Monte-Carlo
planning. In: European conference on machine learning, pp 282–
293

53. Korda N, Kaufmann E, Munos R (2013) Thompson sampling for
1-dimensional exponential family bandits. In: Burges C, Bottou
L, Welling M, Ghahramani Z, Weinberger K (eds) Advances in
neural information processing systems 26. Curran Associates, Inc,
pp 1448–1456

54. Kurniawati H, Hsu D, Lee WS (2008) SARSOP efficient point-
based POMDP planning by approximating optimally reachable
belief spaces. In: Robotics: science and systems, pp 65–72

55. Lai T, Robbins H (1985) Asymptotically efficient adaptive
allocation rules. Adv Appl Math 6:4–22

56. Macindoe O, Kaelbling LP, Lozano-Pérez T (2012) POMCoP:
Belief space planning for sidekicks in cooperative games.
In: Riedl M, Sukthankar G (eds) Proceedings of the eighth
AAAI conference on artificial intelligence and interactive digital
entertainment, AIIDE-12. The AAAI Press, Stanford

57. McAllester DA, Singh S (1999) Approximate planning for
factored pomdps using belief state simplification. In: Proceedings

Posterior sampling for Monte Carlo planning under uncertainty

of the fifteenth conference on uncertainty in artificial intelligence.
Morgan Kaufmann Publishers Inc, pp 409–416

58. McMahan HB, LikhachevM, Gordon G (2005) Bounded real-time
dynamic programming: Rtdp with monotone upper bounds and
performance guarantees. In: Proceedings of the 22nd international
conference on machine learning. ACM, pp 569–576

59. Osband I, Russo D, Van Roy B (2013) (more) efficient
reinforcement learning via posterior sampling. In: Advances in
neural information processing systems, pp 3003–3011

60. Papadimitriou CH, Yannakakis M (1991) Shortest paths without a
map. Theor Comput Sci 84(1):127–150

61. Paquet S, Chaib-draa B, Ross S (2006) Hybrid POMDP
Algorithms. In: Proceedings of the workshop on multi-agent
sequential decision making in uncertain domains (MSDM-06).
Citeseer, pp 133–147

62. Paquet S, Tobin L, Chaib-draa B (2005) Real-time decision
making for large POMDPs. In Advances in artificial intelligence.
Springer, pp 450–455

63. Pineau J, Gordon G, Thrun S et al (2003) Point-based value
iteration: an anytime algorithm for POMDPs. In: IJCAI, vol 3, pp
1025–1032

64. Puterman ML (1994) Markov decision processes: discrete
stochastic dynamic programming. Wiley, New York

65. Ross S, Chaib-Draa B et al (2007) Aems: an anytime online search
algorithm for approximate policy refinement in large POMDPs.
In: IJCAI, pp 2592–2598

66. Ross S, Pineau J, Paquet S, Chaib-Draa B (2008) Online planning
algorithms for POMDPs. J Artif Intell Res 32(1):663–704

67. Sanner S, Goetschalckx R, Driessens K, Shani G (2009) Bayesian
real-time dynamic programming. In: IJCAI, pp 1784–1789

68. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den
Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V,
Lanctot M et al (2016) Mastering the game of Go with deep neural
networks and tree search. Nature 529(7587):484–489

69. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang
A, Guez A, Hubert T, Baker L, Lai M, Bolton A et al (2017)
Mastering the game of go without human knowledge. Nature
550(7676):354

70. Silver D, Veness J (2010) Monte-Carlo planning in large
POMDPs. In: Advances in neural information processing systems,
pp 2164–2172

71. Smith T, Simmons R (2004) Heuristic search value iteration for
POMDPs. In: Proceedings of the 20th conference on uncertainty
in artificial intelligence. AUAI Press, pp 520–527

72. Somani A, Ye N, Hsu D, Lee WS (2013) DESPOT: Online
POMDP planning with regularization. In: Burges C, Bottou L,
Welling M, Ghahramani Z, Weinberger K (eds) Advances in
neural information processing systems 26. Curran Associates, Inc,
pp 1772–1780

73. Sutton RS, Barto AG (1998) Reinforcement learning: An
introduction. The MIT Press, Cambridge

74. Tesauro G, Rajan VT, Segal R (2010) Bayesian inference in
Monte-Carlo tree search. In: Uncertainty in artificial intelligence,
pp 580–588

75. Thompson WR (1933) On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika 25:285–294

76. Thrun S (1999) Monte Carlo POMDPs. In: NIPS, vol 12, pp
1064–1070

77. Tolpin D, Shimony SE (2012) MCTS based on simple regret. In:
AAAI conference on artificial intelligence

78. Vien NA, Ertel W, Dang V-H, Chung T (2013) Monte-Carlo tree
search for bayesian reinforcement learning. Appl Intell 39(2):345–
353

79. Wang T, Lizotte D, Bowling M, Schuurmans D (2005) Bayesian
sparse sampling for on-line reward optimization. In: Proceedings
of the 22nd international conference on machine learning. ACM,
pp 956–963

80. Washington R (1997) BI-POMDP: bounded, incremental
partially-observable Markov-model planning. In: Recent advances
in AI planning. Springer, pp 440–451

81. Winands MH, Bjornsson Y, Saito J (2010) Monte Carlo tree
search in lines of action. IEEE Trans Comput Intell AI Games
2(4):239–250

82. Wu F, Zilberstein S, Chen X (2011) Online planning for ad hoc
autonomous agent teams. In: International joint conference on
artificial intelligence, pp 439–445

83. Zhang Z, Chen X (2012) FHHOP a factored hybrid heuristic
online planning algorithm for large POMDPs. In: Proceedings
of the 28th conference on uncertainty in artificial intelligence.
Catalina Island, pp 934–943

	Posterior sampling for Monte Carlo planning under uncertainty
	Abstract
	Abstract
	Introduction
	Background
	CTP
	MDP
	POMDP
	MAB
	MCTS

	Related work
	Posterior sampling based Monte Carlo planning for MDPs
	Assumptions
	Bayesian modeling and inference
	Thompson sampling based action selection
	DNG-MCTS

	Posterior sampling based Monte Carlo planning for POMDPs
	Assumptions
	Bayesian modeling and inference
	Thompson sampling based action selection
	D2NG-POMCP

	Discussion
	Use of simulator
	Prior distribution
	Convergence

	Experiments
	MAB experiments
	MDP experiments
	POMDP experiments
	Discussion on computational complexity

	Conclusion
	Acknowledgements
	References

