
45

Online Planning for Large Markov Decision Processes with
Hierarchical Decomposition

AIJUN BAI, FENG WU, and XIAOPING CHEN, University of Science and Technology of China

Markov decision processes (MDPs) provide a rich framework for planning under uncertainty. However,
exactly solving a large MDP is usually intractable due to the “curse of dimensionality”— the state space
grows exponentially with the number of state variables. Online algorithms tackle this problem by avoiding
computing a policy for the entire state space. On the other hand, since online algorithm has to find a
near-optimal action online in almost real time, the computation time is often very limited. In the context
of reinforcement learning, MAXQ is a value function decomposition method that exploits the underlying
structure of the original MDP and decomposes it into a combination of smaller subproblems arranged
over a task hierarchy. In this article, we present MAXQ-OP—a novel online planning algorithm for large
MDPs that utilizes MAXQ hierarchical decomposition in online settings. Compared to traditional online
planning algorithms, MAXQ-OP is able to reach much more deeper states in the search tree with relatively
less computation time by exploiting MAXQ hierarchical decomposition online. We empirically evaluate our
algorithm in the standard Taxi domain—a common benchmark for MDPs—to show the effectiveness of our
approach. We have also conducted a long-term case study in a highly complex simulated soccer domain and
developed a team named WrightEagle that has won five world champions and five runners-up in the recent
10 years of RoboCup Soccer Simulation 2D annual competitions. The results in the RoboCup domain confirm
the scalability of MAXQ-OP to very large domains.

Categories and Subject Descriptors: I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, and
Search

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: MDP, online planning, MAXQ-OP, RoboCup

ACM Reference Format:
Aijun Bai, Feng Wu, and Xiaoping Chen. 2015. Online planning for large Markov decision processes with
hierarchical decomposition. ACM Trans. Intell. Syst. Technol. 6, 4, Article 45 (July 2015), 28 pages.
DOI: http://dx.doi.org/10.1145/2717316

1. INTRODUCTION

The theory of the Markov decision process (MDP) is very useful for the general prob-
lem of planning under uncertainty. Typically, state-of-the-art approaches, such as lin-
ear programming, value iteration, and policy iteration, solve MDPs offline [Puterman
1994]. In other words, offline algorithms intend to [compute] a policy for the entire state

This work is supported by the National Research Foundation for the Doctoral Program of China under grant
20133402110026, the National Hi-Tech Project of China under grant 2008AA01Z150, and the National
Natural Science Foundation of China under grants 60745002 and 61175057.
Authors’ addresses: F. Wu and X. Chen, School of Computer Science and Technology, University of Sci-
ence and Technology of China, Jingzhai Road 96, Hefei, Anhui, 230026, China; emails: {wufeng02,
xpchen}@ustc.edu.cn.
Author’s current address: A. Bai, EECS Department, UC Berkeley, 750 Sutardja Dai Hall, Berkeley, CA
94720, USA; email: aijunbai@berkeley.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 2157-6904/2015/07-ART45 $15.00
DOI: http://dx.doi.org/10.1145/2717316

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

http://dx.doi.org/10.1145/2717316
http://dx.doi.org/10.1145/2717316

45:2 A. Bai et al.

space before the agent is actually interacting with the environment. In practice, offline
algorithms often suffer from the problem of scalability due to the well-known “curse of
dimensionality”—that is, the size of state space grows exponentially with the number of
state variables [Littman et al. 1995]. Take, for example, our targeting domain RoboCup
Soccer Simulation 2D (RoboCup 2D).1 Two teams of 22 players play a simulated soc-
cer game in RoboCup 2D. Ignoring some less important state variables (e.g., stamina
and view width for each player), the ball state takes four variables, (x, y, ẋ, ẏ), while
each player state takes six variables, (x, y, ẋ, ẏ, α, β), where (x, y), (ẋ, ẏ), α, and β are
position, velocity, body angle, and neck angle, respectively. Thus, the dimensionality of
the resulting state space is 22 × 6 + 4 = 136. All state variables are continuous. If we
discretize each state variable into only 103 values, we obtain a state space containing
10408 states. Given such a huge state space, it is prohibitively intractable to solve the
entire problem offline. Even worse, the transition model of the problem is subject to
change given different opponent teams. Therefore, it is generally impossible to compute
a full policy for the RoboCup 2D domain using offline methods.

On the other hand, online algorithms alleviate this difficulty by focusing on com-
puting a near-optimal action merely for the current state. The key observation is that
an agent can only encounter a fraction of the overall states when interacting with the
environment. For example, the total number of timesteps for a match in RoboCup 2D
is normally 6,000. Thus, the agent has to make decisions only for those encountered
states. Online algorithms evaluate all available actions for the current state and select
the seemingly best one by recursively performing forward search over reachable state
space. It is worth pointing out that it is not unusual to adopt heuristic techniques
in the search process to reduce time and memory usage as in many algorithms that
rely on forward search, such as real-time dynamic programming (RTDP) [Barto et al.
1995], LAO* [Hansen and Zilberstein 2001], and UCT [Kocsis and Szepesvári 2006].
Moreover, online algorithms can easily handle unpredictable changes of system dy-
namics, because in online settings, we only need to tune the decision making for a
single timestep instead of the entire state space. This makes them a preferable choice
in many real-world applications, including RoboCup 2D. However, the agent must come
up with a plan for the current state in almost real time because computation time is
usually very limited for online decision making (e.g., only 100ms in RoboCup 2D).

Hierarchical decomposition is another well-known approach to scaling MDP algo-
rithms to large problems. By exploiting the hierarchical structure of a particular do-
main, it decomposes the overall problem into a set of subproblems that can potentially
be solved more easily [Barto and Mahadevan 2003]. In this article, we mainly focus
on the method of MAXQ value function decomposition, which decomposes the value
function of the original MDP into an additive combination of value functions for sub-
MDPs arranged over a task hierarchy [Dietterich 1999a]. MAXQ benefits from several
advantages, including temporal abstraction, state abstraction, and subtask sharing.
In temporal abstraction, temporally extended actions (also known as options, skill,
or macroactions) are treated as primitive actions by higher-level subtasks. State ab-
straction aggregates the underlying system states into macrostates by eliminating
irrelevant state variables for subtasks. Subtask sharing allows the computed policy of
one subtask to be reused by some other tasks. For example, in RoboCup 2D, attacking
behaviors generally include passing, dribbling, shooting, intercepting, and positioning.
Passing, dribbling, and shooting share the same kicking skill, whereas intercepting
and positioning utilize the identical moving skill.

In this article, we present MAXQ value function decomposition for online planning
(MAXQ-OP), which combines the main advantages of both online planning and MAXQ

1http://www.robocup.org/robocup-soccer/simulation/.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

http://www.robocup.org/robocup-soccer/simulation/

Online Planning for Large Markov Decision Processes with Hierarchical Decomposition 45:3

hierarchical decomposition to solve large MDPs. Specifically, MAXQ-OP performs
online planning to find the near-optimal action for the current state while exploiting
the hierarchical structure of the underlying problem. Notice that MAXQ is originally
developed for reinforcement learning problems. To the best of our knowledge, MAXQ-
OP is the first algorithm that utilizes MAXQ hierarchical decomposition online.

State-of-the-art online algorithms find a near-optimal action for current state via
forward search incrementally in depth. However, it is difficult to reach deeper nodes in
the search tree within domains with large action space while keeping the appropriate
branching factor to a manageable size. For example, it may take thousands of timesteps
for the players to reach the goal in RoboCup 2D, especially at the very beginning of a
match. Hierarchical decomposition enables the search process to reach deeper states
using temporally abstracted subtasks—a sequence of actions that lasts for multiple
timesteps. For example, when given a subtask called moving-to-target, the agent can
continue the search process starting from the target state of moving-to-target without
considering the detailed plan on specifically moving toward the target, assuming that
moving-to-target can take care of this. This alleviates the computational burden from
searching huge unnecessary parts of the search tree, leading to significant pruning
of branching factors. Intuitively, online planning with hierarchical decomposition can
cover much deeper areas of the search tree, providing more chance to reach the goal
states, and thus potentially improving the action selection strategy to commit a better
action for the root node.

One advantage of MAXQ-OP is that we do not need to manually write down com-
plete local policy for each subtask. Instead, we build a MAXQ task hierarchy by defining
well the active states, the goal states, and optionally the local-reward functions for all
subtasks. Local-reward functions are artificially introduced by the programmer to en-
able more efficient search processes, as the original rewards defined by the problem
may be too sparse to be exploited. Given the task hierarchy, MAXQ-OP automatically
finds the near-optimal action for the current state by simultaneously searching over
the task hierarchy and building a forward search tree. In the MAXQ framework, a
completion function for a task gives the expected cumulative reward obtained after
finishing a subtask but before completing the task itself following a hierarchical policy.
Directly applying MAXQ to online planning requires knowing in advance the comple-
tion function for each task following the recursively optimal policy. Thus, obtaining the
completion function is equivalent to solving the entire task, which is not applicable in
online settings. This poses the major challenge of utilizing MAXQ online.

The key contribution of this article is twofold: the overall framework of exploiting
the MAXQ hierarchical structure online and the approximation method made for com-
puting the completion function online. This work significantly extends our previous
effort on combining online planning with MAXQ [Bai et al. 2012, 2013b] by introducing
a termination distribution for each subtask that gives the state distribution when a
subtask terminates and proposing a new method to approximate termination distribu-
tions. The experimental results in the standard Taxi domain—a common benchmark
for MDPs—confirm the efficiency and effectiveness of MAXQ-OP with the new approx-
imation method. Most importantly, we present our long-term case study in RoboCup
2D by deploying MAXQ-OP and developing a team of autonomous agents, namely
WrightEagle.2 Our team has participated in annual RoboCup competitions since 1999,
winning five world championships and named runner-up five times in the past 10 years.
The experimental and competition results show that MAXQ-OP can scale to very large
problems with outstanding performance.

2http://wrighteagle.org/2d/.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

http://wrighteagle.org/2d/

45:4 A. Bai et al.

The remainder of this article is organized as follows. Section 2 introduces the litera-
ture related to our work. Section 3 briefly reviews the background of MDP and MAXQ.
Section 4 describes in detail our main algorithm—MAXQ-OP. Section 5 discusses how
the MAXQ hierarchical structure can be derived, the state abstraction in MAXQ-OP
algorithm, and some advantages and drawbacks of MAXQ-OP algorithm compared to
traditional online planning algorithms. Section 6 reports our experimental results in
the Taxi domain, and Section 7 presents the case study in RoboCup 2D domain. In
Section 8, we conclude with discussion on potential future work.

2. RELATED WORK

In the context of online planning for MDPs, RTDP [Barto et al. 1995; Bonet and Geffner
2003; McMahan et al. 2005; Sanner et al. 2009] is among the first that tries to find a
near-optimal action for the current state by conducting a trial-based search process with
greedy action selection and an admissible heuristic. Instead of trial-based search, AO*
[Hansen and Zilberstein 2001; Feng and Hansen 2002; Bonet and Geffner 2012] builds
an optimal solution graph with respect to the AND-OR graph by greedily expanding
tip nodes in the current best partial solution graph and assigning values to new nodes
according to an admissible heuristic function. Monte Carlo tree search (MCTS) [Kearns
et al. 1999; Kocsis and Szepesvári 2006; Gelly and Silver 2011; Browne et al. 2012;
Feldman and Domshlak 2012; Bai et al. 2013a] finds near-optimal policies by combining
tree search methods with Monte Carlo sampling techniques. The key idea is to evaluate
each state in a best-first search tree using simulation samples. Most recently, trial-
based heuristic tree search (THTS) [Keller and Helmert 2013] is proposed to subsume
these approaches by classifying five ingredients: heuristic function, backup function,
action selection, outcome selection, and trial length. Although they all try to find a
near-optimal action online for the current state, they do not exploit the underlying
hierarchical structure of the problem as our approach—MAXQ-OP.

In the research of reinforcement learning, hierarchical decomposition has been
adopted under the name of hierarchical reinforcement learning (HRL) [Barto and
Mahadevan 2003]. HRL aims to learn a policy for an MDP efficiently by exploiting
the underlying structure while interacting with the environment. One common ap-
proach is using state abstraction to partition the state space into a set of subspaces,
namely macrostates, by eliminating irrelevant state variables [Andre and Russell 2002;
Asadi and Huber 2004; Hengst 2004; Manfredi and Mahadevan 2005; Li et al. 2006;
Bakker et al. 2005; Hengst 2007]. In particular, Sutton et al. [1999] model HRL as
a semi-Markov decision process (SMDP) by introducing temporally extended actions,
namely options. Each option is associated with an inner policy that can be either man-
ually specified or learned by the agent. Our work is based on the MAXQ value function
decomposition originally proposed by Dietterich [1999a] in the context of HRL. MAXQ-
based HRL methods convert the original MDP into a hierarchy of SMDPs and learn
the solutions simultaneously [Diuk et al. 2006; Jong and Stone 2008].

Similar to reinforcement learning, there exist several offline MDP planning algo-
rithms that also exploit the hierarchical structure to speed up the planning process.
For instance, Hauskrecht et al. [1998] develop an abstract MDP model that works with
macroactions and macrostates by treating macroactions as local policies that act in
certain regions of state space and restricting states in the abstract MDP to those at the
boundaries of regions. Variable influence structure analysis (VISA) [Jonsson and Barto
2006] performs hierarchical decomposition for an MDP by building dynamic Bayesian
network (DBN) models for actions, and constructing causal graphs that capture rela-
tionships between state variables, under the assumption that a factored MDP model
is available. Barry et al. [2011] propose an offline algorithm called DetH* to solve

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

Online Planning for Large Markov Decision Processes with Hierarchical Decomposition 45:5

large MDPs hierarchically by assuming that the transitions between macrostates are
deterministic.

Although hierarchical decomposition has been widely used in the literature of rein-
forcement learning and offline planning for MDPs, it is still nontrivial when applying
it in online settings. The key challenge is that when searching with high-level actions
(tasks), it is critical to know how they can be fulfilled by low-level actions (subtasks or
primitive actions). For example, in the robot soccer domain, if a player wants to shoot
the goal (high-level action), it must first know how to adjust its position and kick the
ball toward a specified position (low-level actions). Unfortunately, this information is
not available in advance during online planning. As aforementioned, we address this
challenge by introducing a termination distribution for each subtask over its terminal
states and assuming that subtasks will take care of the local policies to achieve the
termination distributions. More detail will be described in Section 4.4.

3. BACKGROUND

In this section, we briefly review the MDP model [Puterman 1994] and the MAXQ
hierarchical decomposition method [Dietterich 1999a].

3.1. MDP Framework

Formally, an MDP is defined as a 4-tuple 〈S, A, T , R〉, where

—S is a set of states;
—A is a set of actions;
—T : S × A × S → [0, 1] is the transition function, with T (s′ | s, a) = Pr(s′ | s, a)

denoting the probability of reaching state s′ after action a is performed in state s;
and

—R : S × A → R is the reward function, with R(s, a) denoting the immediate reward
obtained by applying action a in state s.

A policy defined for an MDP is a mapping from states to actions π : S → A, with π (s)
denoting the action to take in state s. The value function V π (s) of a policy π is defined
as the expected cumulative reward by following policy π starting from state s:

V π (s) = E

[∞∑
t=0

γ t R(st, π (st))

]
, (1)

where γ ∈ (0, 1] is a discount factor. The action value function Qπ (s, a) is defined as
the expected cumulative reward by first performing action a in state s and following π
thereafter:

Qπ (s, a) = R(s, a) + γ
∑
s′∈S

T (s′ | s, a)V π (s′). (2)

Solving an MDP is equivalent to finding the optimal policy π∗ such that for any
policy π and any state s ∈ S, V π∗

(s) ≥ V π (s) holds. The optimal value functions V π∗
(s)

and Qπ∗
(s, a) (we denote them as V ∗(s) and Q∗(s, a) for short) satisfy the well-known

Bellman equations [Bellman 1957]:

V ∗(s) = max
a∈A

Q∗(s, a). (3)

Given the optimal value functions by solving the Bellman equations, the optimal policy
π∗ can then be obtained by using

π∗(s) = argmax
a∈A

Q∗(s, a). (4)

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

45:6 A. Bai et al.

Fig. 1. An example of MAXQ task graph (a) and an example of MDP AND-OR tree (b).

In this work, we assume that there exists a set of goal states G ⊆ S such that for all
g ∈ G and a ∈ A, we have T (g | g, a) = 1 and R(g, a) = 0. If the discount factor γ = 1, the
resulting MDP is then called undiscounted goal-directed MDP (a.k.a. stochastic shortest
path problem [Bertsekas 1996]). It has been proved that any MDP can be transformed
into an equivalent undiscounted negative-reward goal-directed MDP where the reward
for nongoal states is strictly negative [Barry 2009]. Hence, undiscounted goal-directed
MDP is actually a general formulation. Here, we are focusing on undiscounted goal-
directed MDPs. However, our algorithm and results can be straightforwardly applied
to other equivalent models.

3.2. MAXQ Hierarchical Decomposition

The MAXQ hierarchical decomposition method decomposes the original MDP M into a
set of sub-MDPs arranged over a hierarchical structure [Dietterich 1999a]. Each sub-
MDP is treated as an macroaction for high-level MDPs. Specifically, let the decomposed
MDPs be {M0, M1, . . . , Mn}, then M0 is the root subtask such that solving M0 solves the
original MDP M. Each subtask Mi is defined as a tuple 〈τi, Ai, R̃i〉, where

—τi is the termination predicate that partitions the state space into a set of active
states Si and a set of terminal states Gi (also known as subgoals);

—Ai is a set of (macro)actions that can be selected by Mi, which can either be primitive
actions of the original MDP M or low-level subtasks; and

—R̃i is the (optional) local-reward function that specifies the rewards for transitions
from active states Si to terminal states Gi.

A subtask can also take parameters, in which case different bindings of parameters
specify different instances of a subtask. Primitive actions are treated as primitive
subtasks such that they are always executable and will terminate immediately after
execution. This hierarchical structure can be represented as a directed acyclic graph—
the task graph. An example of task graph is shown in Figure 1(a). In the figure, root
task M0 has three macroactions: M1, M2, and M3 (i.e., A0 = {M1, M2, M3}). Subtasks M1,
M2, and M3 are sharing lower-level primitive actions Mi (4 ≤ i ≤ 8) as their subtasks.
In other words, a subtask in the task graph is also a (macro)action of its parent. Each
subtask must be fulfilled by a policy unless it is a primitive action.

Given the hierarchical structure, a hierarchical policy π is defined as a set of policies
for each subtask π = {π0, π1, . . . , πn}, where πi for subtask Mi is a mapping from its
active states to actions πi : Si → Ai. The projected value function V π (i, s) is defined as
the expected cumulative reward of following a hierarchical policy π = {π0, π1, . . . , πn}
starting from state s until Mi terminates at one of its terminal states g ∈ Gi. Similarly,
the action value function Qπ (i, s, a) for subtask Mi is defined as the expected cumulative
reward of first performing action Ma (which is also a subtask) in state s, then following

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

Online Planning for Large Markov Decision Processes with Hierarchical Decomposition 45:7

policy π until the termination of Mi. Notice that for primitive subtasks Ma, we have
V π (a, s) = R(s, a).

It has been shown that the value functions of a hierarchical policy π can be expressed
recursively as follows [Dietterich 1999a]:

Qπ (i, s, a) = V π (a, s) + Cπ (i, s, a), (5)

where

V π (i, s) =
{

R(s, i), if Mi is primitive
Qπ (i, s, π (s)). otherwise (6)

Here, Cπ (i, s, a) is the completion function that specifies the expected cumulative re-
ward obtained after finishing subtask Ma but before completing Mi when following the
hierarchical policy π , defined as

Cπ (i, s, a) =
∑

s′∈Gi ,N∈N+
γ N Pr(s′, N | s, a)V π (i, s′), (7)

where Pr(s′, N | s, a) is the probability that subtask Ma will terminate in state s′ after
N timesteps of execution. A recursively optimal policy π∗ can be found by recursively
computing the optimal projected value function as

Q∗(i, s, a) = V ∗(a, s) + C∗(i, s, a), (8)

where

V ∗(i, s) =
{

R(s, i), if Mi is primitive
maxa∈Ai Q∗(i, s, a). otherwise (9)

In Equation (8), C∗(i, s, a) = Cπ∗
(i, s, a), is the completion function of the recursively

optimal policy π∗. Given the optimal value functions, the optimal policy π∗
i for subtask

Mi is then given as

π∗
i (s) = argmax

a∈Ai

Q∗(i, s, a). (10)

4. ONLINE PLANNING WITH MAXQ

In general, online planning interleaves planning with execution and chooses a near-
optimal action only for the current state. Given the MAXQ hierarchy of an MDP (i.e.,
M = {M0, M1, . . . , Mn}), the main procedure of MAXQ-OP evaluates each subtask by
forward searching and computing the recursive value functions V ∗(i, s) and Q∗(i, s, a)
online. This involves a complete search of all paths through the MAXQ hierarchy,
starting from the root task M0 and ending with primitive subtasks at the leaf nodes.
After that, the best action a ∈ A0 is selected for the root task M0 based on the resulting
action values. Accordingly, a primitive action ap ∈ A that should be performed first is
also determined. By performing ap, the environment transits to a new state. Then, the
planning procedure repeats by selecting the seemingly best action for the new time
step. The basic idea of MAXQ-OP is to approximate Equation (8) online. The main
challenge is the approximation of completion function. Section 4.1 gives an overview of
the MAXQ-OP algorithm before presenting it in detail.

4.1. Overview of MAXQ-OP

The key challenge of MAXQ-OP is to estimate the value of the completion function. In-
tuitively, the completion function represents the optimal value obtained from fulfilling
the task Mi after executing a subtask Ma, but before completing task Mi. According to

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

45:8 A. Bai et al.

Equation (7), the completion function of the optimal policy π∗ is written as

C∗(i, s, a) =
∑

s′∈Gi ,N∈N+
γ N Pr(s′, N | s, a)V ∗(i, s′), (11)

where
Pr(s′, N | s, a) = ∑

〈s,s1,...,sN−1〉 T (s1 | s, π∗
a (s)) · T (s2 | s1, π

∗
a (s1))

. . . T (s′ | sN−1, π
∗
a (sN−1)) Pr(N | s, a), (12)

where T (s′ | s, a) is the transition function of the underlying MDP and Pr(N | s, a) is
the probability that subtask Ma will terminate in N steps starting from state s. Here,
〈s, s1, . . . , sN−1〉 is a length-N path from state s to the terminal state s′ by following
the local optimal policy π∗

a ∈ π∗. Unfortunately, computing the optimal policy π∗ is
equivalent to solving the entire problem. In principle, we can exhaustively expand the
search tree and enumerate all possible state-action sequences starting with (s, a) and
ending with s′ to identify the optimal path. However, this is inapplicable to online
algorithms, especially for large domains.

To exactly compute the optimal completion function C∗(i, s, a), the agent must know
the optimal policy π∗. As mentioned, this is equivalent to solving the entire problem.
Additionally, it is intractable to find the optimal policy online due to time constraints.
When applying MAXQ to online algorithms, approximation is necessary to compute
the completion function for each subtask. One possible solution is to calculate an
approximate policy offline and then use it for the online computation of the completion
function. However, it may be also challenging to find a good approximation of the
optimal policy when the domain is very large.

In the MAXQ framework, given an optimal policy, a subtask terminates in any goal
state with probability 1 after several timesteps of execution. Notice that the term γ N

in Equation (7) is equal to 1, as we are focusing on problems with goal states and in
our settings the γ value is assumed to be exactly 1. The completion function can then
be rewritten as

C∗(i, s, a) =
∑
s′∈Gi

Pt(s′ | s, a)V ∗(i, s′), (13)

where Pt(s′ | s, a) = ∑
N Pr(s′, N | s, a) is a marginal distribution defined over the

terminal states of subtask Mi, giving the probability that subtask Ma will terminate
at state s′ starting from state s. Therefore, to estimate the completion function, we
need to first estimate Pt(s′ | s, a), which we call the termination distribution. Thus, for
nonprimitive subtasks, according to Equation (9), we have

V ∗(i, s) ≈ max
a∈Ai

⎧⎨
⎩V ∗(a, s) +

∑
s′∈Ga

Pr(s′ | s, a)V ∗(i, s′)

⎫⎬
⎭. (14)

Although Equation (14) implies the approximation of completion function, it is still
inapplicable to compute online, as Equation (14) is recursively defined over itself. To
this end, we introduce depth array d and maximal search depth array D, where d[i]
is current search depth in terms of macroactions for subtask Mi and D[i] gives the
maximal allowed search depth for subtask Mi. A heuristic function H is also introduced
to estimate the value function when exceeding the maximal search depth. Equation (14)
is then approximated as

V (i, s, d) ≈
⎧⎨
⎩

H(i, s), if d[i] ≥ D[i]
maxa∈Ai {V (a, s, d)+∑

s′∈Ga
Pr(s′ | s, a)V (i, s′, d[i] ← d[i] + 1)}, otherwise.

(15)

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

Online Planning for Large Markov Decision Processes with Hierarchical Decomposition 45:9

Equation (15) gives the overall framework of MAXQ-OP, which makes applying
MAXQ online possible. When implementing the algorithm, calling V (0, s, [0, 0, . . . , 0])
returns the value of state s in root task M0, as well as a primitive action to be performed
by the agent.

In practice, instead of evaluating all terminal states of a subtask, we sample a subset
of terminal states. Let Gs,a = {s′ | s′ ∼ Pt(s′ | s, a)} be the set of sampled states; the
completion function is then approximated as

C∗(i, s, a) ≈ 1
|Gs,a|

∑
s′∈Gs,a

V ∗(i, s′). (16)

Furthermore, Equation (15) can be rewritten as

V (i, s, d) ≈
⎧⎨
⎩

H(i, s), if d[i] ≥ D[i]
maxa∈Ai {V (a, s, d)+∑

s′∈Gs,a

1
|Gs,a| V (i, s′, d[i] ← d[i] + 1)}, otherwise.

(17)

It is worth noting that Equation (17) is introduced to prevent enumerating the entire
space of terminal states of a subtask, which could be huge.

ALGORITHM 1: OnlinePlanning()
Input: an MDP model with its MAXQ hierarchical structure
Output: the accumulated reward r after reaching a goal

Let r ← 0;
Let s ← GetInitState();
Let root task ← 0;
Let depth array ← [0, 0, . . . , 0];

while s �∈ G0 do
〈v, ap〉 ← EvaluateStateInSubtask(root task, s, depth array);
r ← r+ ExecuteAction(ap, s);
s ← GetNextState();

return r;

4.2. Main Procedure of MAXQ-OP

The overall process of MAXQ-OP is shown in Algorithm 1, where state s is initialized
by GetInitState function and GetNextState function returns the next state of the en-
vironment after ExecuteAction function is executed. The main process loops over until
a goal state in G0 is reached. Notice that the key procedure of MAXQ-OP is Evaluate-
StateInSubtask, which evaluates each subtask by depth-first search and returns the
seemingly best action for the current state. EvaluateStateInSubtask function is called
with a depth array containing all zeros for all subtasks. Section 4.3 explains Evaluat-
eStateInSubtask function in detail.

4.3. Task Evaluation over Hierarchy

To choose a near-optimal action, an agent must compute the action value function for
each available action in current state s. Typically, this process builds a search tree
starting from s and ending with one of the goal states. The search tree is also known as
an AND-OR tree, where the AND nodes are actions and the OR nodes are outcomes of
action activation(i.e., states in MDP settings) [Nilsson 1982; Hansen and Zilberstein
2001]. The root node of such an AND-OR tree represents the current state. The search in

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

45:10 A. Bai et al.

ALGORITHM 2: EvaluateStateInSubtask(i, s, d)
Input: subtask Mi , state s and depth array d
Output: 〈V ∗(i, s), a primitive action a∗

p〉
if Mi is primitive then return 〈R(s, Mi), Mi〉;
else if s �∈ Si and s �∈ Gi then return 〈−∞, nil〉;
else if s ∈ Gi then return 〈0, nil〉;
else if d[i] ≥ D[i] then return 〈HeuristicValue(i, s), nil〉;
else

Let 〈v∗, a∗
p〉 ← 〈−∞, nil〉;

for Mk ∈ Subtasks(Mi) do
if Mk is primitive or s �∈ Gk then

Let 〈v, ap〉 ← EvaluateStateInSubtask(k, s, d);
v ← v+ EvaluateCompletionInSubtask(i, s, k, d);
if v > v∗ then

〈v∗, a∗
p〉 ← 〈v, ap〉;

return 〈v∗, a∗
p〉;

the tree is proceeded in a best-first manner until a goal state or a maximal search depth
is reached. When reaching the maximal depth, a heuristic function is usually used to
estimate the expected cumulative reward for the remaining timesteps. Figure 1(b) gives
an example of the AND-OR tree. In the figure, s0 is the current state with two actions a1
and a2 available for s0. The corresponding transition probabilities are T (s1 | s0, a1) = p,
T (s2 | s0, a1) = 1 − p, T (s3 | s0, a2) = q, and T (s4 | s0, a2) = 1 − q.

In the presence of a task hierarchy, Algorithm 2 summarizes the pseudocode of the
search process of MAXQ-OP. MAXQ-OP expands the node of the current state s by
recursively evaluating each subtask of Mi, estimates the respective completion func-
tion, and finally selects the subtask with the highest returned value. The recursion
terminates when (1) the subtask is a primitive action; (2) the state is a goal state or a
state beyond the scope of this subtask’s active states; or (3) the maximal search depth
is reached—that is, d[i] ≥ D[i]. Note that each subtask can have different maximal
depths (e.g., subtasks in the higher level may have smaller maximal depth in terms of
evaluated macroactions). If a subtask corresponds to a primitive action, an immediate
reward will be returned together with the action. If the search process exceeds the max-
imal search depth, a heuristic value is used to estimate the future long-term reward.
In this case, a nil action is also returned (however, it will not be chosen by high-level
subtasks in the algorithm’s implementation). In other cases, EvaluateStateInSubtask
function recursively evaluates all lower-level subtasks and finds the seemingly best
(macro)action.

4.4. Completion Function Approximation

As shown in Algorithm 3, a recursive procedure is developed to estimate the comple-
tion function according to Equation (17). Here, termination distributions need to be
provided for all subtasks in advance. Given a subtask with domain knowledge, it is
possible to approximate the respective termination distribution either offline or online.
For subtasks with few goal states, such as robot navigation or manipulation, offline
approximation is possible—it is rather reasonable to assume that these subtasks will
terminate when reaching any of the target states; for subtasks that have a wide range
of goal states, either desired target states or just failures for the subtasks, such as pass-
ing the ball to a teammate or shooting the ball in presence of opponents in RoboCup
2D, online approximation is preferable given some assumptions of the transition model.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

Online Planning for Large Markov Decision Processes with Hierarchical Decomposition 45:11

ALGORITHM 3: EvaluateCompletionInSubtask(i, s, a, d)
Input: subtask Mi , state s, action Ma and depth array d
Output: estimated C∗(i, s, a)

Let Gs,a ← {s′ | s′ ∼ Pt(s′ | s, a)};
Let v ← 0;

for s′ ∈ Gs,a do
d′ ← d;
d′[i] ← d′[i] + 1;
v ← v+ EvaluateStateInSubtask(i, s′, d′);

v ← v

|Gs,a| ;
return v;

ALGORITHM 4: NextAction(i, s)
Input: subtask index i and state s
Output: selected action a∗

if SearchStopped(i, s) then
return nil;

else
Let a∗ ← arg maxa∈Ai

Hi[s, a] + c
√

ln Ni [s]
Ni [s,a] ;

Ni[s] ← Ni[s] + 1;
Ni[s, a∗] ← Ni[s, a∗] + 1;
return a∗;

Notice that a goal state for a subtask is a state where the subtask terminates, which
could be a successful situation for the subtask but could also be a failed situation.
For example, when passing the ball to a teammate, the goal states are the cases in
which either the ball is successfully passed, the ball has been intercepted by any of
the opponents, or the ball is running out of the field. Although it is not mentioned in
the algorithm, it is also possible to cluster the goal states into a set of classes (e.g.,
success and failure), sample or pick a representative state for each class, and use the
representatives to recursively evaluate the completion function. This clustering tech-
nique is very useful for approximating the completion functions for subtasks with huge
numbers of goal states. Take RoboCup 2D, for example. The terminating distributions
for subtasks such as pass, intercept, and dribble usually have several peaks for the
probability values. Intuitively, each peak corresponds to a representative state that is
more likely to happen than others. Instead of sampling from the complete terminating
distribution, we use these representative states to approximate the completion func-
tion. Although this is only an approximate for the real value, it is still very useful for
action selection in the planning process. How to theoretically bound the approximation
error will be a very interesting challenge but is beyond the scope of this work.

4.5. Heuristic Search in Action Space

For domains with large action space, it may be very time consuming to enumerate all
possible actions (subtasks). Hence, it is necessary to use heuristic techniques (including
pruning strategies) to speed up the search process. Intuitively, there is no need to
evaluate those actions that are not likely to be better than currently evaluated actions.
In MAXQ-OP, this is done by implementing an iterative version of Subtasks function
using a NextAction procedure to dynamically select the most promising action to be

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

45:12 A. Bai et al.

evaluated next with the trade-off between exploitation and exploration. The trade-
off between exploitation and exploration is needed because the agent does not know
the particular order in terms of action values among (macro)actions for the current
evaluated state before the complete search (otherwise, the agent does not have to
search), in which case the agent should not only exploit by evaluating the seemingly
good actions first but also should explore other actions for higher future payoffs.

Different heuristic techniques, such as A*, hill-climbing, and gradient ascent, can
be used for different subtasks. Each of them may have a different heuristic function.
However, these heuristic values do not need to be comparable to each other, as they are
only used to suggest the next action to be evaluated for the specific subtask. In other
words, the heuristic function designed for one subtask is not used for the other subtasks
during action selection. Once the search terminates, only the chosen action is returned.
Therefore, different heuristic techniques are only used inside NextAction. However, for
each subtask, the heuristic function (as HeuristicValue in Algorithm 2) is designed to
be globally comparable because it is used by all subtasks to give an estimation of the
action evaluation when the search reaches the maximal search depth.

For large problems, a complete search in the state space of a subtask is usually
intractable even if we have the explicit representation of the system dynamics available.
To address this, we use a Monte Carlo method as shown in Algorithm 4, where the UCB1
[Auer et al. 2002] version of NextAction function is defined. By so doing, we do not have
to perform a complete search in the state space to select an action, as only visited states
in the Monte Carlo search tree are considered. Additionally, the algorithm has the very
nice anytime feature that is desirable for online planning because the planning time is
very limited. It is worth noting that for Monte Carlo methods, the exploration strategy
is critical to achieve good performance. Therefore, we adopt the UCB1 method, which
guarantees convergence to the optimal solution given sufficient amount of simulations
[Auer et al. 2002]. Furthermore, it has been shown to be very useful for exploration in
a large solution space [Gelly and Silver 2011].

Here, in Algorithm 4, Ni[s] and Ni[s, a] are the visiting counts of state s and state-
action pair (s, a), respectively, for subtask Mi, and c

√
ln Ni[s]/Ni[s, a] is a biased bonus

with higher value for rarely tried actions to encourage exploration on them, where c is
a constant variable that balances the trade-off between exploitation and exploration.
These values are maintained and reused during the whole process when the agent is
interacting with the environment. The procedure SearchStopped dynamically deter-
mines whether the search process for the current task should be terminated based on
pruning conditions (e.g., the maximal number of evaluated actions, or the action-value
threshold). Hi[s, a] are heuristic values of applying action a in state s for subtask Mi,
initialized according to domain knowledge. They can also be updated incrementally
while the agent interacts with the environment, for example, according to a learning
rule, Hi[s, a] ← (1 − α)Hi[s, a] + αQ(i, s, a), which is commonly used in reinforcement
learning algorithms [Sutton and Barto 1998].

5. DISCUSSION: MAXQ-OP ALGORITHM

In this article, the MAXQ task hierarchy used in the MAXQ-OP algorithm is assumed
to be provided by the programmer according to some prior domain knowledge. In other
words, the programmer needs to identify subgoals in the underlying problem and define
subtasks that achieve these subgoals. For example, in the RoboCup 2D domain, this
requires the programmer to have some knowledge about the soccer game and be able
to come up with some subtasks, including shooting, dribbling, passing, positioning, and
so forth. Given the hierarchical structure, MAXQ-OP automatically searches over the

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

Online Planning for Large Markov Decision Processes with Hierarchical Decomposition 45:13

task structure, as well as the state space, to find out the seemingly best action for the
current state, taking advantage of some specified heuristic techniques.

Another promising approach that has been drawing much research interest is
discovering the hierarchical structure automatically from state-action histories in
the environment, either online or offline [Hengst 2002; Stolle 2004; Bakker and
Schmidhuber 2004; Şimşek et al. 2005; Mehta et al. 2008, 2011]. For example, Mehta
et al. [2008] presents hierarchy induction via models and trajectories (HI-MAT), which
discovers MAXQ task hierarchies by applying DBN models to successful execution tra-
jectories of a source MDP task; the HEXQ [Hengst 2002, 2004] method decomposes
MDPs by finding nested sub-MDPs where there are policies to reach any exit with
certainty; and Stolle [2004] performs automatic hierarchical decomposition by taking
advantage of the factored representation of the underlying problem. The resulting hi-
erarchical structure discovered by these methods can be directly used to construct a
MAXQ task graph, which can then be used to implement the MAXQ-OP algorithm.
The combined method is automatically applicable to general domains.

One important advantage of MAXQ-OP algorithm is that it is able to transfer the
MAXQ hierarchical structure from one domain to other similar domains [Mehta et al.
2008; Taylor and Stone 2009]. Transferring only structural knowledge across MDPs is
shown to be a viable alternative to transferring the entire value function or learned
policy itself, which can also be easily generalized to similar problems. For example, in
the eTaxi domain, the same MAXQ structure can be used without modifications for
problem instances with different sizes. This also provides a possibility to discover or
design a MAXQ hierarchical structure for smaller problems, then transfer it to larger
problems to be reused. With techniques of designing, discovering, and transferring
MAXQ hierarchical structural, the MAXQ-OP algorithm is applicable to a wide range
of problems.

Another advantage of the MAXQ hierarchical structure is the ability to exploit state
abstractions so that individual MDPs within the hierarchy can ignore large parts of the
state space [Dietterich 1999b]. Each action in the hierarchy abstracts away irrelevant
state variables without compromising the resulting online policy. For a subtask, a set
of state valuables Y can be abstracted if the joint transition function for each child
action can be divided into two parts, where the part related to Y does not affect the
probability of execution for a certain number of steps—for instance,

Pr(x′, y′, N | x, y, a) = Pr(x′, N | x, a) × Pr(y′ | y, a), (18)

where x and x′ give values for state variables in X; y and y′ give values for state variables
in Y ; X ∪ Y is the full state vector; and a is a child action, which could be either a
macroaction or a primitive action. For example, in RoboCup 2D, if the agent is planning
for the best action to move to a target position from its current position as fast as
possible, then the state variables representing the ball and other players are irrelevant
for the moving subtask. For a primitive action, those state variables that do not affect
the primitive transition and reward models can be abstracted away. As an example,
in RoboCup 2D, the positions of other players are irrelevant to kick action given the
relative position of the ball, because the kick action has the same transition and reward
models despite the location of other players. By ignoring irrelevant state variables
during the search processes for subtasks, state abstractions make the algorithm more
efficient when searching over the state space, as a state in its abstracted form actually
represents a subspace of the original state space. Evaluating an abstracted state is
actually evaluating a set of states in the original state space. In MAXQ-OP, state
abstractions are assumed to be provided for all subtasks together with the MAXQ
hierarchy, according to the domain knowledge of the underlying problem.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

45:14 A. Bai et al.

Fig. 2. The Taxi domain (a) and the MAXQ task graph for Taxi (b).

Compared to traditional online planning algorithms, the success of MAXQ-OP is due
to the fact that it is able to reach much deeper nodes in the search tree by exploit-
ing hierarchical structure given the same computation resources. Traditional online
planning algorithms, such as RTDP, AOT, and MCTS, search only in state space, by
step-by-step expanding the search node to recursively evaluate an action at the root
node. The search process terminates at a certain depth with the help of a heuristic
function that assumes the goal state has been reached. A typical search path of this
search process can be summarized in Equation (19), where si is the state node, sH is
the deepest state node where a heuristic function is called, → is the state transition, �

represents the calling of a heuristic function, and g is one of the goal states:

[s1 → s2 → s3 → · · · → sH] � g. (19)

The MAXQ-OP algorithm searches not only in the state space but also over the
task hierarchy. For each subtask, only a few steps of macroactions are searched. The
remaining steps are abstracted away by using a heuristic function inside the subtask,
and a new search will be invoked at one of the goal states of previous searched subtasks.
This leads to a large number of prunings in the state space. A search path of running
MAXQ-OP for a MAXQ task graph with two levels of macroactions (including root task)
is summarized in Equation (20), where sHi is the deepest searched state node in one
subtask; gi is one of the goal states of a subtask, which is also a start state for another
subtask; and g is one of the goal states for the root task:

[s1 → · · · → sH1] � [g1/s′
1 → · · · → s′

H2
] � [g2/s′′

1 → · · · → s′′
H3] · · · � g. (20)

One drawback of MAXQ-OP is the significant amount of domain knowledge that
must be adopted for the algorithm to work well. More specifically, constructing the
hierarchy, incorporating heuristic techniques for subtasks, and estimating the termi-
nation distributions either online or offline require domain knowledge to work well.
For complex problems, this will not be an effort that can be ignored. On the other hand,
automatically solving highly complicated problems with huge state and action spaces
is quite challenging. The ability to exploit various domain knowledge to enhance the so-
lution quality for complex problems can also be seen as one advantage of the MAXQ-OP
method.

6. EXPERIMENTS: THE TAXI DOMAIN

The standard Taxi domain is a common benchmark problem for hierarchical planning
and learning in MDPs [Dietterich 1999a]. As shown in Figure 2(a), it consists of a
5 × 5 grid world with walls and 4 taxi terminals: R, G, Y, and B. The goal of a taxi
agent is to pick up and deliver a passenger. The system has four state variables:

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

Online Planning for Large Markov Decision Processes with Hierarchical Decomposition 45:15

Table I. Complete Definitions of Nonprimitive Subtasks for the Taxi Domain

Subtask Active States Terminal States Actions Max Depth

Root All states pl = dl Get and Put 2
Get pl �= taxi pl = taxi Nav(t) and Pickup 2
Put pl = taxi pl = dl Nav(t) and Putdown 2
Nav(t) All states (x, y) = t North, South, East, and West 7

the agent’s coordination x and y, the pickup location pl, and the destination dl. The
variable pl can be one of the 4 terminals, or just taxi if the passenger is inside the taxi.
The variable dl must be one of the 4 terminals. In our experiments, pl is not allowed
to equal dl. Therefore, this problem has totally 404 states with 25 taxi locations, 5
passenger locations, and 4 destination locations, excluding the states where pl = dl .
This is identical to the setting of Jong and Stone [2008]. At the beginning of each
episode, the taxi’s location, the passenger’s location, and the passenger’s destination
are all randomly generated. The problem terminates when the taxi agent successfully
delivers the passenger. There are six primitive actions: (a) four navigation actions that
move the agent into one neighbor grid—North, South, East, and West; (b) the Pickup
action; and (c) the Putdown action. Each navigation action has a probability of 0.8 to
successfully move the agent in the desired direction and a probability of 0.1 for each
perpendicular direction. Each legal action has a reward of −1, whereas illegal Pickup
and Putdown actions have a penalty of −10. The agent also receives a final reward of
+20 when the episode terminates with a successful Putdown action.

When applying MAXQ-OP in this domain, we use the same MAXQ hierarchical
structure proposed by Dietterich [1999a], as shown in Figure 2(b). Note that the
Nav(t) subtask takes a parameter t, which could either be R, G, Y, or B, indicating the
navigation target. In the hierarchy, the four primitive actions and the four navigational
actions abstract away the passenger and destination state variables. Get and Pickup ig-
nore destination, and Put and Putdown ignore passenger. The definitions of the nonprim-
itive subtasks are shown in Table I. The Active States and Terminal States columns give
the active and terminal states for each subtask, respectively; the Actions column gives
the child (macro)actions for each subtask; and the Max Depth column specifies the max-
imal forward search depths in terms of (macro)actions allowed for each subtask in the
experiments.

The procedure EvaluateCompletionInSubtask is implemented as follows. For high-
level subtasks such as Root, Get, Put, and Nav(t), we assume that they will terminate in
the designed goal states with probability 1, and for primitive subtasks such as North,
South, East, and West, the domain’s underlying transition model T (s′ | s, a) is used
to sample a next state according to its transition probability. For each nonprimitive
subtask, the function HeuristicValue is designed as the sum of the negative of a
Manhattan distance from the taxi’s current location to the terminal state’s location
and other potential immediate rewards. For example, the heuristic value for the Get
subtask is defined as −Manhattan((x, y), pl)−1, where Manhattan((x1, y1), (x2, y2)) gives
the Manhattan distance |x1 − x2| + |y1 − y2|.

A cache-based pruning strategy is implemented to enable more effective subtask
sharing. More precisely, if state s has been evaluated for subtask Mi with depth d[i] = 0,
suppose that the result is 〈v, ap〉; then, this result will be stored in a cache table as

cache[i, hash(i, s)] ← 〈v, ap〉,
where cache is the cache table and hash(i, s) gives the hash value of relevant variables
of state s in subtask Mi. The next time the evaluation of state s under the same con-
dition is requested, the cached result will be returned immediately with a probability

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

45:16 A. Bai et al.

Table II. Empirical Results in the Taxi Domain

Algorithm Trials Average Rewards Offline Time Average Online Time

MAXQ-OP 1,000 3.93 ± 0.16 — 0.20 ± 0.16 ms
LRTDP 1,000 3.71 ± 0.15 — 64.88 ± 3.71 ms
AOT 1,000 3.80 ± 0.16 — 41.26 ± 2.37 ms
UCT 1,000 −23.10 ± 0.84 — 102.20 ± 4.24 ms
DNG-MCTS 1,000 −3.13 ± 0.29 — 213.85 ± 4.75 ms
R-MAXQ 100 3.25 ± 0.50 1200 ± 50 episodes -
MAXQ-Q 100 0.0 ± 0.50 1, 600 episodes -

Note: The optimal value of Average Rewards is 4.01 ± 0.15 averaged over 1,000 trials.

of 0.9. This strategy results in a huge number of search tree prunings. The key obser-
vation is that if a subtask has been completely evaluated before (i.e., evaluated with
d[i] = 0), then it is most likely that we do not need to reevaluate it again in the near
future.

In the experiments, we run several trials for each comparison algorithm with ran-
domly selected initial states and report the average returns (accumulated rewards)
and time usage over all trials in Table II. Offline time is the computation time used
for offline algorithms to converge before evaluation online, and online time is the
overall running time from initial state to terminal state for online algorithms when
evaluating online. LRTDP [Bonet and Geffner 2003], AOT [Bonet and Geffner 2012],
UCT [Kocsis and Szepesvári 2006], and DNG-MCTS [Bai et al. 2013a] are all trial-
based anytime algorithms. The number of iterations for each action selection is set to
100. The maximal search depth is 100. They are implemented as online algorithms. A
min-min heuristic [Bonet and Geffner 2003] is used to initialize new nodes in LRTDP
and AOT, and a min-min heuristic–based greedy policy is used as the default rollout
policy for UCT and DNG-MCTS. Note that both UCT and DNG-MCTS are Monte Carlo
algorithms that only have knowledge of a generative model (a.k.a. a simulator) instead
of the explicit transition model of the underlying MDP. R-MAXQ and MAXQ-Q are
HRL algorithms. The results are taken from Jong and Stone [2008]. All experiments
are run on a Linux 3.8 computer with 2.90GHz quad-core CPUs and 8GB RAM. It can
be seen from the results that MAXQ-OP is able to find the near-optimal policy of the
Taxi domain online with the value of 3.93 ± 0.16, which is very close to the optimal
value of 4.01 ± 0.15. In particular, the time usage for MAXQ-OP is extremely less than
other online algorithms compared in the experiments. These comparisons empirically
confirm the effectiveness of MAXQ-OP in terms of its ability to exploit the hierarchical
structure of the underlying problem while performing online decision making.

Furthermore, we have also introduced an extension of the Taxi domain to test our
algorithm more thoroughly when scaling to increasingly complex problems. In the
extended eTaxi[n] problem, the grid world size is n × n. The four terminals R, G, Y,
and B, are arranged at positions (0, 0), (0, n−1), (n−2, 0), and (n−1, n−1), respectively.
There are three walls, each with length �n−1

2 � started at positions in between (0, 0) and
(1, 0), (1, n− 1) and (2, n− 1), and (n− 3, 0) and (n− 2, 0), respectively. The action space
remains the same as in the original Taxi domain. The transition and reward functions
are extended accordingly such that if n = 5, eTaxi[n] reduces to the original Taxi
problem. The same experiments with the min-min heuristic for all online algorithms
are conducted over different sizes of eTaxi, ranging from n = 5 to 15. MAXQ-OP is also
implemented with a min-min heuristic in this experiment, as the walls are relatively
much longer in eTaxi with larger sizes, such that the simple Manhattan distance–based
heuristic is not sufficient for MAXQ-OP. The average returns and online time usages
are reported in Figure 3(a) and (b). It can be seen from the results that MAXQ-OP has

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

Online Planning for Large Markov Decision Processes with Hierarchical Decomposition 45:17

Fig. 3. Average returns (a) and average online time usages in eTaxi (b).

competitive performance in terms of average returns comparing to LRTDP and AOT,
but with significantly less time usage. To conclude, MAXQ-OP is more time efficient
due to the hierarchical structure used and the state abstraction and subtask sharing
made in the algorithm.

7. CASE STUDY: ROBOCUP 2D

As one of the oldest leagues in RoboCup, the soccer simulation 2D league has achieved
great successes and inspired many researchers all over the world to engage themselves
in this game each year [Nardi and Iocchi 2006; Gabel and Riedmiller 2011]. Hundreds
of research articles based on RoboCup 2D have been published.3 Compared to other
leagues in RoboCup, the key feature of RoboCup 2D is the abstraction made by the sim-
ulator, which relieves the researchers from having to handle low-level robot problems
such as object recognition, communications, and hardware issues.

The abstraction enables researchers to focus on high-level functions such as planning,
learning, and cooperation. For example, Stone et al. [2005] have done a lot of work on
applying reinforcement learning methods to RoboCup 2D. Their approaches learn high-
level decisions in a keepaway subtask using episodic SMDP Sarsa(λ) with linear tile-
coding function approximation. More precisely, their robots learn individually when to
hold the ball and when to pass it to a teammate. They have also extended their work to
a more general task named half-field offense [Kalyanakrishnan et al. 2007]. In the same
reinforcement learning track, Riedmiller et al. [2009] have developed several effective
techniques to learn mainly low-level skills in RoboCup 2D, such as intercepting and
hassling.

In this section, we present our long-term effort of applying MAXQ-OP to the planning
problem in RoboCup 2D. The MAXQ-OP–based overall decision framework has been
implemented in our team WrightEagle, which has participated in annual RoboCup
competitions since 1999, winning five world championships and named runner-up five
times in the past 10 years.

To apply MAXQ-OP, we must first model the planning problem in RoboCup 2D as a
MDP. This is nontrivial given the complexity of RoboCup 2D. We show how RoboCup
2D can be modeled as an MDP in Appendix A and what we have done in our team
WrightEagle. Based on this, the following sections describe the successful application
of MAXQ-OP in the RoboCup 2D domain.

3http://www.cs.utexas.edu/∼pstone/tmp/sim-league-research.pdf.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

http://www.cs.utexas.edu/protect $elax sim $pstone/tmp/sim-league-research.pdf.

45:18 A. Bai et al.

7.1. Solution with MAXQ-OP

Here we describe our effort in applying MAXQ-OP to the RoboCup 2D domain in
detail. First, a series of subtasks at different levels are defined as the building blocks
for constructing the overall MAXQ hierarchy, listed as follows:

—kick, turn, dash, and tackle: These actions are the lowest-level primitive actions orig-
inally defined by the server. A local reward of –1 is assigned to each primitive action
when performed to guarantee that the found online policy for high-level skills will
try to reach respective (sub)goal states as fast as possible. kick and tackle ignore all
the state variables except the state of the agent itself and the ball state; turn and
dash only consider the state of the agent itself.

—KickTo, TackleTo, and NavTo: In the KickTo and TackleTo subtasks, the goals are to
finally kick or tackle the ball in given direction with specified velocities. To achieve
the goals, particularly in KickTo behavior, multiple steps of adjustment by executing
turn or kick actions are usually necessary. The goal of the NavTo subtask (as shown
in Figure 6(a)) is to move the agent from its current location to a target location
as fast as possible by executing turn and dash actions under the consideration of
action uncertainties. Subtasks KickTo and TackleTo terminate if the ball is no longer
kickable/tackleable for the agent, and NavTo terminates if the agent has arrived the
target location within a distance threshold. KickTo and TackleTo only consider the
states of the agent itself and the ball; NavTo ignores all state variables except the state
of the agent itself.

—Shoot, Dribble, Pass, Position, Intercept, Block, Trap, Mark, and Formation: These sub-
tasks are high-level behaviors in our team, where (1) Shoot is to kick out the ball to
score (as shown in Figure 6(b)), (2) Dribble is to dribble the ball in an appropriate di-
rection, (3) Pass is to pass the ball to a proper teammate, (4) Position is to maintain in
formation when attacking, (5) Intercept is to get the ball as fast as possible, (6) Block
is to block the opponent who controls the ball, (7) Trap is to hassle the ball controller
and wait to steal the ball, (8) Mark is to keep an eye on close opponents, and (9) For-
mation is to maintain in formation when defending. Active states for Shoot, Dribble,
and Pass are that the ball is kickable for the agent, whereas for other behaviors, the
ball is not kickable for the agent. Shoot, Dribble, and Pass terminate when the ball
is not kickable for the agent; Intercept terminates if the ball is kickable for the agent
or is intercepted by any other players; Position terminates when the ball if kickable
for the agent or is intercepted by any opponents; and other defending behaviors ter-
minate when the ball is intercepted by any teammates (including the agent). These
high-level behaviors will only consider relevant state variables—for example, Shoot,
Dribble, and Intercept only consider the state of the agent, the state of the ball, and the
states of other opponent players if they are close to the ball; Block, Trap, and Mark only
consider the state of the agent itself and the state of one target opponent player; and
Pass, Position, and Formation need to consider the states of all players and the ball.

—Attack and Defense: The goal of Attack is to attack opponents to finally score by
planning on attacking behaviors, whereas the goal of Defense is to defend against
opponents to prevent scoring of opponents by taking defending behaviors. Attack
terminates if the ball is intercepted by any opponents, whereas Defense terminates
if the ball is intercepted by any teammates (including the agent). All state variables
are relevant to Attack and Defense, as they will be used by child actions.

—Root: This is the root task of the agent. A hand-coded strategy is used in Root task.
It evaluates the Attack subtask first to see whether it is possible to attack; otherwise,
it will select the Defense subtask. Roottask cannot ignore any state variables.

The task graph of the MAXQ hierarchical structure in the WrightEagle team is shown
in Figure 4, where a parenthesis after a subtask’s name indicates that the subtask takes

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

Online Planning for Large Markov Decision Processes with Hierarchical Decomposition 45:19

Fig. 4. MAXQ task graph for WrightEagle.

parameters. Take Attack, Pass, and Intercept as examples. For convenience, we assume
that the agent always has an appropriate body angle when the ball is kickable for the
agent, so the KickTo behavior only needs to plan kick actions. Let s be the estimated
joint state; according to Equations (8), (9), and (13), we have

Q∗(Root, s, Attack) = V ∗(Attack, s) +
∑

s′
Pt(s′ | s, Attack)V ∗(Root, s′), (21)

V ∗(Root, s) = max{Q∗(Root, s, Attack), Q∗(Root, s, Defense)}, (22)

V ∗(Attack, s) = max{Q∗(Attack, s, Pass), Q∗(Attack, s, Dribble), Q∗(Attack, s, Shoot),
Q∗(Attack, s, Intercept), Q∗(Attack, s, Position)}, (23)

Q∗(Attack, s, Pass) = V ∗(Pass, s) +
∑

s′
Pt(s′ | s, Pass)V ∗(Attack, s′), (24)

Q∗(Attack, s, Intercept) = V ∗(Intercept, s) +
∑

s′
Pt(s′ | s, Intercept)V ∗(Attack, s′), (25)

V ∗(Pass, s) = max
position p

Q∗(Pass, s, KickTo(p)), (26)

V ∗(Intercept, s) = max
position p

Q∗(Intercept, s, NavTo(p)), (27)

Q∗(Pass, s, KickTo(p)) = V ∗(KickTo(p), s) +
∑

s′
Pt(s′ | s, KickTo(p))V ∗(Pass, s′), (28)

Q∗(Intercept, s, NavTo(p)) = V ∗(NavTo(p), s) +
∑

s′
Pt(s′ | s, NavTo(p))V ∗(Intercept, s′),

(29)

V ∗(KickTo(p), s) = max
power a, angle θ

Q∗(KickTo(p), s, kick(a, θ)), (30)

V ∗(NavTo(p), s) = max
power a, angle θ

Q∗(NavTo(p), s, dash(a, θ)), (31)

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

45:20 A. Bai et al.

Fig. 5. Hierarchical planning in pass behavior. c©The RoboCup Federation.

Q∗(KickTo(p), s, kick(a, θ)) = R(s, kick(a, θ)) +
∑

s′
Pt(s′ | s, kick(a, θ))V ∗(KickTo(p), s′),

(32)

Q∗(NavTo(p), s, dash(a, θ)) = R(s, dash(a, θ)) +
∑

s′
Pt(s′ | s, dash(a, θ))V ∗(NavTo(p), s′).

(33)
As an example, Figure 5 shows the hierarchical planning process in Pass behavior.

When player 11 is planning the Pass behavior, the agent will evaluate the possibility of
passing the ball to each teammate; for each teammate, the agent will propose a set of
pass targets to kick the ball; and for each target, the agent will plan a sequence of kick
actions to kick the ball to that position as fast as possible in the KickTo subtask. The set
of targets proposed for each teammate is generated by using a hill-climbing method,
which tries to find a most valuable target for a particular teammate in terms of an
evaluation function defined by recursive value functions of low-level subtasks and the
completion function of the Pass behavior, which strongly depends on the probability of
success for the passing target.

As mentioned, the local reward for kick action is R(s, kick(a, θ)) = −1, and the re-
spective termination distribution Pt(s′ | s, kick(a, θ)) is totally defined by the server.
Subtask KickTo(p) successfully terminates if the ball after a kick is moving approx-
imately toward position p. Thus, Equation (30) gives the negative number of cycles
needed to kick the ball to position p. Subtask Pass terminates if the ball is not kickable
for the agent, and the control returns to Attack, which will then evaluate whether the
agent should do Intercept in case the ball is slipped from the agent or Position to keep
in attacking formation. Subtask NavTo(p) terminates if the agent is almost at position
p. Similarly, we have R(s, dash(a, θ)) = −1, and Pt(s′ | s, dash(a, θ)) is defined by the

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

Online Planning for Large Markov Decision Processes with Hierarchical Decomposition 45:21

server. Equation (31) gives the negative number of cycles needed to move the agent to
position p from its current position in the joint state s. Equation (27) gives the negative
value of the expected number of cycles needed to intercept the ball. The Attack behav-
ior terminates if the ball is intercepted by the opponent team. When terminating, the
control returns to the Root behavior, which will consider taking defending behaviors by
planning in Defense task. The Defense behavior terminates if the ball is intercepted
by the agent or any teammates.

To approximate termination distributions online for behaviors, a fundamental prob-
ability that needs to be estimated is the probability that a moving ball will be in-
tercepted by a player p (either a teammate or an opponent). Let b = (bx, by, bẋ, bẏ)
be the state of the ball and p = (px, py, pẋ, pẏ, pα, pβ) be the state of the player. Let
Pr(p ← b | b, p) denote the probability that the ball will be intercepted by player p.
Formally, Pr(p ← b | b, p) = max{Pr(p ← b, t | b, p)}, where Pr(p ← b, t | b, p) is the
probability that player p will intercept the ball at cycle t from now, which is approx-
imated as Pr(p ← b, t | b, p) = g(t − f (p, bt)), where bt is the ball’s predicted state in
cycle t, f (p, bt) returns the estimated number of cycles needed for the player moving at
its maximal speed from the current position (px, py) to the ball’s position in cycle t, and
g(δ) gives the estimated probability given that the cycle difference is δ. The intercepting
probability function g(δ) is illustrated in Figure 7. Given the intercepting probabilities,
we approximate termination distributions for other behaviors, for example, as

Pt(s′ | s, Attack) = 1 −
∏

opponent o

(1 − Pr(o ← b | b, o)), (34)

Pt(s′ | s, Defense) = 1 −
∏

teammate t

(1 − Pr(t ← b | b, t)), (35)

Pt(s′ | s, Intercept) = 1[∃player i : i ← b]Pt(i ← b | b, i)
∏

player p�=i

(1 − Pr(p ← b | b, p)),

(36)

Pt(s′ | s, Position) = 1[∃non-teammate i : i ← b] Pr(i ← b | b, i)
∏

player p�=i

× (1 − Pr(p ← b | b, p)), (37)

where b = s[0] is the ball state. Some other probabilities, such as the probability that
the moving ball will finally go through the opponent goal, are approximated offline,
taking advantage of some statistical methods.

State abstractions are implicitly introduced by the task hierarchy. For example, only
the agent’s self-state and the ball’s state are relevant when evaluating Equations (30)
and (27). When enumerating power and angle for the kick and dash actions, only a set
of discretized parameters is considered. This leads to limited precision of the solution,
yet is necessary to deal with continuous action space and meet real-time constraints.
To deal with the large action space, heuristic methods are critical to apply MAXQ-OP.
There are many possible candidates depending on the characteristic of subtasks. For
instance, hill climbing is used when searching over the action space of KickTo for the
Pass subtask (as shown in Figure 5), and A* search is used to search over the action
space of dash and turn for the NavTo subtask in the discretized state space. A search
tree of the NavTo subtask is shown in Figure 6(a), where yellow lines represent the
state transitions in the search tree. For Shoot behavior, it turns out the we only need
to evaluate a set of dominant positions in terms of the joint probability that the ball

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

45:22 A. Bai et al.

Fig. 6. Heuristic search in action spaces. c©The RoboCup Federation.

Fig. 7. Intercepting probability estimation.

can finally go through the opponent goal area, without being touched by any of the
opponent players, including the goalie, which is depicted in Figure 6(b), where only a
small set of positions linked with purple lines is evaluated.

Another important component of applying MAXQ-OP is to estimate value functions
for subtasks using heuristics when the search depth exceeds the maximal depth al-
lowed. Taking the Attack task as an example, we introduce impelling speed to estimate
V ∗(Attack, st), where st is the state to be evaluated in t cycles from now. Given current
state s and the state s′ to be evaluated, impelling speed is formally defined as

impelling speed(s, s′, α) = dist(s, s′, α) + pre dist(s′, α)
step(s, s′) + pre step(s′)

, (38)

where α is a global attacking direction (named aim-angle in our team), dist(s, s′, α) is
the ball’s running distance projected in direction α from state s to state s′, step(s, s′) is
the running steps from state s to state s′, pre dist(s′) estimates remaining distance pro-
jected in direction α from state s′ that the ball can be impelled without being intercepted
by opponents, and pre step(s′) is the respective remaining steps. The aim-angle α in
state s is determined by an aim angle(s) function. V ∗(Attack, s) is then approximated
as

V ∗(Attack, st) = impelling speed(s0, st, aim angle(s0)), (39)

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

Online Planning for Large Markov Decision Processes with Hierarchical Decomposition 45:23

Fig. 8. A heuristic function used in defending behaviors.

where s0 is the current state—that is, the root of the search tree. The value of
impelling speed(s0, st, aim angle(s0)) implies the fact that the faster the ball is mov-
ing in the attacking direction, the more attacking opportunities there could be, and the
more valuable the state st is.

For defending behaviors, a value function over ball positions is used as the heuristic
function, which is shown in Figure 8. The figure reflects the fact that the positions in
opponent goal area are the most valuable positions, whereas the positions around our
bottom line are very dangerous when defending.

7.2. Empirical Evaluation

To test how the MAXQ-OP framework affects our team’s final performance, we have
compared three different versions of our team, including:

—FULL: This is exactly the full version of our team, where a MAXQ-OP–based online
planning framework is implemented as the key component. The Attack behavior
chooses among attacking behaviors such as Shoot, Pass, and Dribble according to
their returned values in the MAXQ-OP framework.

—RANDOM: This is almost the same as FULL, except that when the ball is kickable for
the agent and the Shoot behavior finds no solution, the Attack behavior randomly
chooses Pass or Dribble with uniform probabilities.

—HAND-CODED: This is similar to RANDOM, but instead of a random selection between
Pass and Dribble, a hand-coded strategy is used. With this strategy, if there is no
opponent within 3m from the agent, then Dribble is chosen; otherwise, Pass is chosen.

Notice that the only difference between FULL, RANDOM, and HAND-CODED is the local se-
lection strategy between Pass and Dribble in the Attack behavior. In FULL, this selection
is automatically made based on the values returned from lower-level subtasks (i.e., the
solutions found by EvaluateStateInSubtask(Pass, ·, ·) and EvaluateStateInSubtask
(Dribble, ·, ·) in the MAXQ-OP framework). Although RANDOM and HAND-CODED have
different Pass-Dribble selection strategies, the remaining subtasks, including Shoot,
Pass, Dribble, and Intercept and all defending behaviors, remain the same as in the
FULL version.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

45:24 A. Bai et al.

Fig. 9. A selected initial scenario from RoboCup 2011. c©The RoboCup Federation.

Table III. Empirical Results of WrightEagle in the Scenario Test

Version Episodes Success Failure Timeout

FULL 100 28 31 41
RANDOM 100 15 44 41
HAND-CODED 100 17 38 45

For each version of the testing team, we use an offline coach (also known as a trainer
in RoboCup 2D) to independently run the team against the Helios11 binary (which has
participated in RoboCup 2011 and won second place) for 100 episodes. Each episode
begins with a fixed scenario given by a complete joint state taken from the final match
of RoboCup 2011 and ends when (1) our team scores a goal, denoted by success; (2) the
ball’s x coordination is smaller than –10.0, denoted by failure; or (3) the episode runs
longer than 200 cycles, denoted by timeout. Note that although all of the episodes
begin with the same scenario, none of them is identical due to the uncertainties of the
environment.

The initial state in the selected scenario, which is at cycle #3142 of that match, is
shown in Figure 9, in which white circles represent our players, gray circles represent
opponents, and the small black circle represents the ball. At this cycle, our player 10
is holding the ball, whereas 9 opponents (including the goalie) are blocking in front of
their goal area. In RoboCup 2011, teammate 10 passed the ball directly to teammate
11. When teammate 11 had the ball, it passed the ball back to teammate 10 after
dribbling for a number of cycles. When teammate 11 moved to an appropriate position,
teammate 10 passed the ball again to teammate 11. Finally, teammate 11 executed a
Tackle action to shoot at cycle #3158 and successfully scored five cycles later.

The experimental results are presented in Table III, from which we can see that
the FULL version of our team outperforms both RANDOM and HAND-CODED with an in-
crease of the chance of success by 86.7% and 64.7%, respectively. The performances
of RANDOM and HAND-CODED are actually very close, the reason being that they are
sharing the same task hierarchy and all of the same subtasks as in the Full version
except the Pass-Dribble selection strategy. We find that the local selection strategy
between Pass and Dribble plays a key role in the decision of Attack and affects the

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

Online Planning for Large Markov Decision Processes with Hierarchical Decomposition 45:25

Table IV. Empirical Results of WrightEagle in the Full Game Test

Opponent Team Games Average Goals Average Points Winning Rate

Brainstormers08 100 3.09 : 0.82 2.59 : 0.28 82.0 ± 7.5%
Helios10 100 4.30 : 0.88 2.84 : 0.11 93.0 ± 5.0%
Helios11 100 3.04 : 1.33 2.33 : 0.52 72.0 ± 8.8%
Oxsy11 100 4.97 : 1.33 2.79 : 0.16 91.0 ± 5.6%

Table V. Historical Results of WrightEagle in RoboCup Annual Competitions Since 2005

Competitions Games Points Goals Win Draw Lost Average Points Average Goals

RoboCup 2005 19 47 84 : 16 15 2 2 2.47 4.42 : 0.84
RoboCup 2006 14 38 57 : 6 12 2 0 2.71 4.07 : 0.43
RoboCup 2007 14 34 125 : 9 11 1 2 2.42 8.92 : 0.64
RoboCup 2008 16 40 74 : 18 13 1 2 2.50 4.63 : 1.13
RoboCup 2009 14 36 81 : 17 12 0 2 2.57 5.79 : 1.21
RoboCup 2010 13 33 123 : 7 11 0 2 2.54 9.47 : 0.54
RoboCup 2011 12 36 151 : 3 12 0 0 3.00 12.6 : 0.25
RoboCup 2012 21 58 104 : 18 19 1 1 2.76 4.95 : 0.86
RoboCup 2013 19 53 104 : 9 17 2 0 2.79 5.47 : 0.47

final performance substantially. The results indicate that the MAXQ-OP–based local
selection strategy between Pass and Dribble is sufficient for the Attack behavior to
achieve high performance. Recursively, this is also true for other subtasks over the
resulting task hierarchy, such as Defense, Shoot, and Pass. The comparison with the
HAND-CODED strategy also indicates that the MAXQ-OP algorithm gets leverage not
only from the hierarchical structure but also from the algorithm itself in terms of the
MAXQ-OP–derived action-selection strategy. To conclude, MAXQ-OP is able to be the
key to success of our team in this scenario test.

We have also tested the FULL version of our team in full games against four high-
quality RoboCup 2D teams, namely Brainstormers08, Helios10, Helios11, and Oxsy11.
Brainstormers08 and Helios10 were the champions of RoboCup 2008 and RoboCup
2010, respectively. In the experiments, we independently ran our team against one
of the official binaries for 100 games under the same hardware conditions. Table IV
summarizes the detailed empirical result. The winning rate is defined as p = n/N,
where n is the number of games that we have won and N is the total number of
games. It can be seen from the result that our team substantially outperforms other
teams in terms of the winning rate. Specifically, our team has about 82.0%, 93.0%,
83.0%, and 91.0% of the chances to win over BrainsStomers08, Helios10, Helios11 and
Oxsy11, respectively. Table V reports the historical results of WrightEagle in RoboCup
2D annual competitions since 2005. It can be seen from the result that our team has
reached outstanding performance in RoboCup competitions: we rarely lose or draw in
the competitions.

Although there are multiple factors contributing to the general performance of a
RoboCup 2D team, it is our observation that our team benefits greatly from the hierar-
chical structure we used and the abstraction we made for the actions and states. The
key advantage of applying MAXQ-OP in RoboCup 2D is to provide a principled frame-
work for conducting the online search process over a task hierarchy. Therefore, the
team can search for a strategy-level solution automatically online by being given the
predefined task hierarchy. To the best of our knowledge, most of the current RoboCup
teams develop their agents based on hand-coded rules. Overall, the goal of this case
study is twofold: (1) it demonstrates the scalability and efficiency of MAXQ-OP for
solving a large real-world application such as RoboCup 2D, and (2) it presents a

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

45:26 A. Bai et al.

decision-theoretic solution for developing a RoboCup soccer team, which is general
for programming high-level strategies.

8. CONCLUSIONS

This article presents MAXQ-OP—a novel online planning algorithm that benefits from
the advantage of hierarchical decomposition. It recursively expands the search tree
online by following the underlying MAXQ task hierarchy. This is efficient, as only
relevant states and actions are considered according to the task hierarchy. Another
contribution of this work is the completion function approximation method, which
makes it possible to apply MAXQ-OP online. The key observation is that the termi-
nation distribution is relatively easy to be approximated either online or offline given
domain knowledge. The empirical results show that MAXQ-OP is able to find a near-
optimal policy online for the Taxi domain and reaches outstanding performance in the
highly complex RoboCup 2D domain. The experimental results confirm the soundness
and stability of MAXQ-OP to solve large MDPs by utilizing hierarchical structure. In
future work, we plan to theoretically analyze MAXQ-OP with different task priors and
test them on more real-world applications.

ACKNOWLEDGMENTS

The authors thank Changjie Fan, Ke Shi, Haochong Zhang, Guanghui Lu, Rongya Chen, Xiao Li, and other
members for their contributions to the WrightEagle team. The authors would like to thank Manuela Veloso,
Shlomo Zilberstein, Peter Stone, and the CORAL research group at CMU for the helpful discussions with
them. The authors also want to thank the anonymous reviewers for their valuable comments and suggestions.

REFERENCES

David Andre and Stuart J. Russell. 2002. State Abstraction for Programmable Reinforcement Learning
Agents. Technical Report. University of California at Berkeley.

Mehran Asadi and Manfred Huber. 2004. State space reduction for hierarchical reinforcement learning. In
Proceedings of the FLAIRS Conference. 509–514.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of the multiarmed bandit
problem. Machine Learning 47, 2, 235–256.

Aijun Bai, Feng Wu, and Xiaoping Chen. 2012. Online planning for large MDPs with MAXQ decomposition
(extended abstract). In Proceedings of the 11th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS’12). 1215–1216.

Aijun Bai, Feng Wu, and Xiaoping Chen. 2013a. Bayesian mixture modelling and inference based Thompson
sampling in Monte-Carlo tree search. In Advances in Neural Information Processing Systems 26. 1646–
1654.

Aijun Bai, Feng Wu, and Xiaoping Chen. 2013b. Towards a principled solution to simulated robot soccer. In
RoboCup 2012: Robot Soccer World Cup XVI. Lecture Notes in Computer Science, Vol. 7500. Springer,
141–153.

Bram Bakker and Jürgen Schmidhuber. 2004. Hierarchical reinforcement learning based on subgoal dis-
covery and subpolicy specialization. In Proceedings of the 8th Conference on Intelligent Autonomous
Systems. 438–445.

Bram Bakker, Zoran Zivkovic, and Ben Krose. 2005. Hierarchical dynamic programming for robot path
planning. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’05). IEEE, Los Alamitos, CA, 2756–2761.

Jennifer Barry. 2009. Fast Approximate Hierarchical Solution of MDPs. Ph.D. Dissertation. Massachusetts
Institute of Technology, Cambridge, MA.

Jennifer Barry, Leslie Kaelbling, and Tomas Lozano-Perez. 2011. DetH*: Approximate hierarchical solution
of large Markov decision processes. In Proceedings of the International Joint Conference on Artificial
Intelligence. 1928–1935.

Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. 1995. Learning to act using real-time dynamic
programming. Artificial Intelligence 72, 1–2, 81–138.

Andrew G. Barto and Sridhar Mahadevan. 2003. Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems 13, 4, 341–379.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

Online Planning for Large Markov Decision Processes with Hierarchical Decomposition 45:27

Richard Bellman. 1957. Dynamic Programming. Princeton University Press, Princeton, NJ.
Dimitri P. Bertsekas. 1996. Dynamic Programming and Optimal Control. Athena Scientific.
Blai Bonet and Hector Geffner. 2003. Labeled RTDP: Improving the convergence of real-time dynamic pro-

gramming. In Proceedings of the 13th International Conference on Automated Planning and Scheduling.
Blai Bonet and Hector Geffner. 2012. Action selection for MDPs: Anytime AO* vs. UCT. In Proceedings of

the AAAI Conference on Artificial Intelligence. 1749–1755.
Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling, Philipp

Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. 2012. A sur-
vey of Monte Carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
Games 4, 1, 1–43.

Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian Thrun. 2001. Monte Carlo localization for
mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 2.
IEEE, Los Alamitos, CA, 1322–1328.

Thomas G. Dietterich. 1999a. Hierarchical reinforcement learning with the MAXQ value function decompo-
sition. Journal of Machine Learning Research 13, 1, 63.

Thomas G. Dietterich. 1999b. State abstraction in MAXQ hierarchical reinforcement learning. arXiv preprint
cs/9905015.

Carlos Diuk, Alexander L. Strehl, and Michael L. Littman. 2006. A hierarchical approach to efficient rein-
forcement learning in deterministic domains. In Proceedings of the 5th International Joint Conference
on Autonomous Agents and Multiagent Systems. ACM, New York, NY, 313–319.

Zohar Feldman and Carmel Domshlak. 2012. Simple regret optimization in online planning for Markov
decision processes. arXiv preprint 1206.3382.

Zhengzhu Feng and Eric A. Hansen. 2002. Symbolic heuristic search for factored Markov decision processes.
In Proceedings of the 18th National Conference on Artificial Intelligence (AAAI’02). 455–460.

Thomas Gabel and Martin Riedmiller. 2011. On progress in RoboCup: The simulation league showcase. In
RoboCup 2010: Robot Soccer World Cup XIV. Lecture Notes in Computer Science, Vol. 6556. Springer,
36–47.

Sylvain Gelly and David Silver. 2011. Monte-Carlo tree search and rapid action value estimation in computer
Go. Artificial Intelligence 175, 11, 1856–1875.

Eric A. Hansen and Shlomo Zilberstein. 2001. LAO*: A heuristic search algorithm that finds solutions with
loops. Artificial Intelligence 129, 1–2, 35–62.

Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling, Thomas Dean, and Craig Boutilier. 1998. Hierar-
chical solution of Markov decision processes using macro-actions. In Proceedings of the 14th Conference
on Uncertainty in Artificial Intelligence. 220–229.

Bernhard Hengst. 2002. Discovering hierarchy in reinforcement learning with HEXQ. In Proceedings of the
19th International Conference on Machine Learning (ICML’02), Vol. 2. 243–250.

Bernhard Hengst. 2004. Model approximation for HEXQ hierarchical reinforcement learning. In Machine
Learning: ECML 2004. Lecture Notes in Computer Science, Vol. 3201. Springer, 144–155.

Bernhard Hengst. 2007. Safe state abstraction and reusable continuing subtasks in hierarchical reinforce-
ment learning. In AI 2007: Advances in Artificial Intelligence. Lecture Notes in Computer Science,
Vol. 4830. Springer, 58–67.

Nicholas K. Jong and Peter Stone. 2008. Hierarchical model-based reinforcement learning: R-max + MAXQ.
In Proceedings of the 25th International Conference on Machine Learning. ACM, New York, NY, 432–439.

Anders Jonsson and Andrew Barto. 2006. Causal graph based decomposition of factored MDPs. Journal of
Machine Learning Research 7, 2259–2301.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. 1998. Planning and acting in partially
observable stochastic domains. Artificial Intelligence 101, 1–2, 99–134.

Shivaram Kalyanakrishnan, Yaxin Liu, and Peter Stone. 2007. Half field offense in RoboCup soccer: A
multiagent reinforcement learning case study. In RoboCup 2006: Robot Soccer World Cup X. Lecture
Notes in Computer Science, Vol. 4434. Springer, 72–85.

Michael Kearns, Yishay Mansour, and Andrew Y. Ng. 1999. A sparse sampling algorithm for near-optimal
planning in large Markov decision processes. In Proceedings of the 16th International Joint Conference
on Artificial Intelligence, Vol. 2. 1324–1331.

Thomas Keller and Malte Helmert. 2013. Trial-based heuristic tree search for finite horizon MDPs. In
Proceedings of the 23rd International Conference on Automated Planning and Scheduling (ICAPS’13).
135–143.

Levente Kocsis and Csaba Szepesvári. 2006. Bandit based Monte-Carlo planning. In Proceedings of the
European Conference on Machine Learning. 282–293.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

45:28 A. Bai et al.

Lihong Li, Thomas J. Walsh, and Michael L. Littman. 2006. Towards a unified theory of state abstraction for
MDPs. In Proceedings of the 9th International Symposium on Artificial Intelligence and Mathematics
(ISAIM’06).

Michael L. Littman, Thomas L. Dean, and Leslie P. Kaelbling. 1995. On the complexity of solving Markov
decision problems. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. 394–
402.

Victoria Manfredi and Sridhar Mahadevan. 2005. Hierarchical reinforcement learning using graphical mod-
els. In Proceedings of the ICML 2005 Workshop on Rich Representations for Reinforcement Learning.
39–44.

H. Brendan McMahan, Maxim Likhachev, and Geoffrey J. Gordon. 2005. Bounded real-time dynamic pro-
gramming: RTDP with monotone upper bounds and performance guarantees. In Proceedings of the 22nd
International Conference on Machine Learning. ACM, New York, NY, 569–576.

Neville Mehta, Soumya Ray, Prasad Tadepalli, and Thomas Dietterich. 2008. Automatic discovery and
transfer of MAXQ hierarchies. In Proceedings of the 25th International Conference on Machine Learning.
ACM, New York, NY, 648–655.

Neville Mehta, Soumya Ray, Prasad Tadepalli, and Thomas Dietterich. 2011. Automatic discovery and
transfer of task hierarchies in reinforcement learning. AI Magazine 32, 1, 35.

Daniele Nardi and Luca Iocchi. 2006. Artificial intelligence in RoboCup. In Reasoning, Action and Interaction
in AI Theories and Systems. Lecture Notes in Computer Science, Vol. 4155. Springer, 193–211.

Nils J. Nilsson. 1982. Principles of Artificial Intelligence. Springer.
Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John

Wiley & Sons.
Martin Riedmiller, Thomas Gabel, Roland Hafner, and Sascha Lange. 2009. Reinforcement learning for robot

soccer. Autonomous Robots 27, 1, 55–73.
Scott Sanner, Robby Goetschalckx, Kurt Driessens, and Guy Shani. 2009. Bayesian real-time dynamic pro-

gramming. In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI’09).
1784–1789.

Özgür Şimşek, Alicia P. Wolfe, and Andrew G. Barto. 2005. Identifying useful subgoals in reinforcement
learning by local graph partitioning. In Proceedings of the 22nd International Conference on Machine
Learning. ACM, New York, NY, 816–823.

Martin Stolle. 2004. Automated Discovery of Options in Reinforcement Learning. Ph.D. Dissertation. McGill
University.

Peter Stone. 2000. Layered Learning in Multiagent Systems: A Winning Approach to Robotic Soccer. MIT
Press.

Peter Stone, Richard S. Sutton, and Gregory Kuhlmann. 2005. Reinforcement learning for RoboCup soccer
keepaway. Adaptive Behavior 13, 3, 165–188.

Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An Introduction, Vol. 116. Cambridge
University Press.

Richard S. Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence 112, 1, 181–211.

Matthew E. Taylor and Peter Stone. 2009. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research 10, 1633–1685.

Received April 2014; revised October 2014; accepted January 2015

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 4, Article 45, Publication date: July 2015.

