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Abstract. Most of existing benchmarking tools for service robots are
basically qualitative, in which a robot’s performance on a task is evalu-
ated based on completion/incompletion of actions contained in the task.
In the effort reported in this paper, we tried to implement a synthetical
benchmarking system on domestic mobile platforms. Synthetical bench-
marking consists of both qualitative and quantitative aspects, such as
task completion, accuracy of task completions and efficiency of task com-
pletions, about performance of a robot. The system includes a set of algo-
rithms for collecting, recording and analyzing measurement data from a
MoCap system. It was used as the evaluator in a competition called
the BSR challenge, in which 10 teams participated, at RoboCup 2015.
The paper presents our motivations behind synthetical benchmarking,
the design considerations on the synthetical benchmarking system, the
realization of the competition as a comparative study on performance
evaluation of domestic mobile platforms, and an analysis of the teams’
performance.

1 Introduction

Benchmarking robotic systems is challenging [1–3]. Robotic competitions are
believed to be a feasible way to overcome the difficulty by appealing research
groups to take their experimental results to be compared under the same test
conditions [4]. Lots of well recognized competitions are held every year around
the world. The focus of AAAI [5–7] and IJCAI [8] Robot Competitions is putted
on benchmarking AI and robotic technology with relevance to real-life applica-
tions and changes yearly. DARPA Robotics Challenge [9] aims to develop semi-
autonomous ground robots that can do complex tasks in dangerous, degraded,
human-engineered environments. RoboCup1, an initiative to promote research
in AI, robotics, and related fields, currently is the largest robotics competi-
tion, with a number of leagues such as RoboCup Soccer, RoboCup Rescue,
RoboCup@Work, RoboCup@Home [10–12]. RoboCup@Home aims to drive

1 http://www.robocup.org/.
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research on domestic robotics towards robust techniques and useful applica-
tions and to stimulate teams to compare their approaches on a set of common
tests, and has resulted in improvement of capabilities of domestic service robots
(DSRs) such as mobile manipulation [13], human-robot interaction, object recog-
nition. RoCKIn [14,15], a project of FP7, broadens the scope of RoboCup@Home
and RoboCup@Work in terms of scientific validity by being organized as a sci-
entific benchmarking competition.

Most of existing competitions focus on qualitative evaluation on the perfor-
mance of a robot, do not provide quantitative evaluation on what degree of per-
formance a robot achieves. The objective of this effort is to advance and extend
benchmarking competition by introducing quantitative evaluation. We share the
same objective with RoCKIn, while taking a different approach. RoCKIn is a top-
down endeavor by starting from a global framework for its long-term goals. Our
effort is bottom-up in the sense that we started our endeavor from a much smaller
case study—synthetical benchmarking of domestic mobile plarforms (DMPs).

We describe our motivations of introducing synthetical benchmarking in
Sect. 2. A set of prescribed features for benchmarking DSRs are given in Sect. 3.
Based on these features, the BSR challenge was organized at RoboCup 2015.
The implementation of the BSR challenge is presented in Sect. 4. We provide an
analysis on performance of participating teams to the BSR challenge in Sect. 5.
A brief discussion and future work are given in Sect. 6. We draw conclusions in
Sect. 7.

2 Why Synthetical Benchmarking

In this paper, by synthetical benchmarking we mean benchmarking that includes
both qualitative and quantitative benchmarking. A qualitative benchmarking
evaluates robot performance based on completion/incompletion of the actions
contained in a task, where only two outcomes, i.e., completion or incompletion
of each of these actions, are considered. Then some statistics on the qualitative
outcomes of the actions may be made as an evaluation of the task. As an example,
consider a task consisting of only one action pick up a can. In current competition
of @Home league, one can only observe whether the action is completed or not
by a robot, as an evaluation of the robot’s performance on this task.

A quantitative benchmarking provides quantitative evaluation of robot per-
formance on tasks. For example, when a robot completes a task/action, accuracy
(such as errors) of the task/action completion can be acquired in quantitative
evaluation. For instance, consider action move to a waypoint. In quantitative
benchmarking, one can acquire quantitative measurement, the errors, of the
robot’s moving performance on the task. Without this quantitative evaluation,
it is very hard to acquire any objective and accurate evaluation on the moving
performance.

There are strong reasons why synthetical benchmarking of service robots is
needed by introducing quantitative evaluation. First, quantitative benchmarking
can generates finer evaluation than qualitative benchmarking can. Suppose either
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Robot-1 or Robot-2 complete a task (say, pick up a can) with 80 % success.
Then one cannot distinguish between the two robots performance on the task.
However, there may be significant difference between accuracies of the two robots
completions of the task. In some scenarios (as for the task of move to a waypoint)
and applications, accuracy is a necessary factor in performance evaluation of
robots.

Second, inclusion of both quantitative and qualitative aspects in performance
evaluation of service robots supports better trade-offs among these aspects. Tasks
in the @Home and @Work competitions are complicated and thus should be
evaluated based on trade-offs among multiple performance factors. Generally,
a comprehensive evaluation of such a task should include the following perfor-
mance factors: completion of the task, accuracy of completions, and efficiency of
completions (which can be measured simply with the time a robot spends for its
completion of a task). A more reasonable overall evaluation should reflect some
trade-offs among these factors, with accuracy being included in.

Third, accuracy data enable new solutions to some of costly work in devel-
opment of service robots. For many functionalities of a service robot, even if an
algorithm is correct, there are still a lot of parameters in the algorithm need
to be tuned. Currently, manual tuning is the only solution, which costs a lot of
time and is very low efficient. However, auto-tuning based on Machine Learning
technology becomes possible if a sufficient amount of relevant accuracy data can
be acquired. In this case, benchmarking supports research and development of
service robots in a more direct and efficient way.

Based on these considerations, we have launched this long-term effort on
synthetical benchmarking of service robots. At the first phase of this effort, we
have done the following work. First, we have implemented a (semi-)automatic
real-time evaluation system (ARES) for benchmarking DMP performance. The
system includes a set of algorithms for collecting, recording and analyzing mea-
surement data from a MoCap system [16,17], OptiTrack2. Second, we organized
the Demo Challenge on Service Robots, a competition at RoboCup 2015. 25
teams applied and 11 of them were qualified for the competition. 10 qualified
teams actually participated in the competition, in which our ARES was used for
evaluating performance of the competing robots. Third, we organized a work-
shop on the same subject during the competition. About 100 participants from
more than 10 countries attended the workshop.

The MoCap system (showed in Fig. 1) we used is an optical detection system
with passive markers [18], which uses several fixed high speed cameras around
the measurement area to triangulate a precise marker position. A set of markers
(showed in Fig. 2) are attached on a robot, so that the robots behaviors can be
captured by the MoCap system and then evaluated by our ARES real-time.

2 http://www.optitrack.com/.

http://www.optitrack.com/
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Fig. 1. The MoCap system Fig. 2. The marker

3 Benchmarking on DMPs

In order to make benchmarks of DMP specific, an initial set of key features
(hardware properties and functionalities) was derived from an analysis of DMPs
and from experiences and observations of the common working scenes of DSRs.
These features are evaluation criteria for the performance of DMPs. Furthermore,
these features not only help design the benchmarks and the score system for the
competition, but also allow for a later analysis of a team’s performance. These
features are divided into two groups: hardware properties and functionalities.

Hardware Properties. Taking into account DSRs’ working environments and
application demands, we propose hardware properties that must be implemented
in each DMP in order to perform properly in the tests. To achieve these hardware
properties, many technical details should be considered appropriately during
mechanical designing and component selection progress. An appropriate trade-off
is also needed between cost and the DMP’s performance. The proposed hardware
properties are characterized below.

Cost Limitation. Unlike pure theoretical research, one of goals of robotics research
is to improve human life by bringing robust robotic technology to industry to
create robotic applications. However, there is big gap between robotics research
results and robotic products. Frequently robotics research pay more attention to
verifying hypotheses and increasing knowledge, paying little attention to the cost
and marketability of research outcomes. Thus, we insist that cost should be a
important benchmarking condition.

Motor Feedback. Motor feedback captures the rotation angle of each wheel per
control cycle, which is the source data to compute the odometry that is usually
used as the input data in localization module. Besides, in the case of robot
precise relative pose adjustment (e.g. mobile manipulation), odometry is the
basis for adjusting robot pose, since global poses, generated by global localization
techniques, are generally not as precise as odometry.
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Payload Capacity. DMPs are expected to be extensible and customizable. Addi-
tional accessories, e.g. robotic arms and manipulators are expected to be inte-
grated with DMPs to implement specific functionalities. According to the weight
of common accessories, we believe that the payload capacity of DMPs should not
be less than 20 kg.

Traversable Ability. Despite the fact that the floors of every-day environments
are even, minor unevenness such as carpets, transitions in floor covering between
different areas, and minor gaps (e.g. gaps between the floor and the elevator) are
inevitable and also reflected in the RoboCup@Home competition. DMPs should
be designed to adapt to these environment diversities.

Functionalities. The overall robotic system performance depends on the per-
formance of integrated functional modules, which can be described as functional
abilities or functionalities. As to DMPs, localization, navigation, and obstacle
avoidance are the main functionalities.

Localization. The ability to estimate the real poses of a robot in the working
environment.

Navigation. The task of path-planning and safely navigating to a specific target
position in the environment.

Obstacle Avoidance. The ability to avoid collisions during a robot travel in the
environment. Robots should be able to avoid not only static obstacles but also
dynamic ones.

4 Implementation of the BSR Challenge

A robot qualified for the BSR challenge is expected to have a basic mobile
platform (i.e., a robot base) and extended sensors such as camera, Laser Range
Finder (LRF). The hardware cost of the basic mobile platform (including the
costs of materials and components) or the market retail price (not discounted
or second-hand price) should be less than 1,600 USD (about 10,000 RMB). The
hardware cost or the market retail price (not discounted or second-hand price)
of extended sensors should be less than 50 % of the basis mobile platform.

In order to enable the BSR challenge a synthetical benchmarking, we intro-
duced a MoCap system to measure and, at the same time, record the movement
of a DMP, with high accuracy in real time. The recorded data can not only enable
quantitative analysis of the performance of DMPs in the competition, but also
help make the DMP performance reproducible, which are taken as being utmost
important to scientific experiments. After competitions, teams have free access
to the record data.

The BSR challenge was organized in three tests and a presentation session.
The mentioned key features are evaluated either as functional abilities, or as an
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Fig. 3. The competition area (Color figure online)

integrated test. These tests and the score system are designed carefully ensuring
each feature be contained in a test and be reflected in the final score. In the
presentation session, each team was required to report its technical approach
and share their experience with other teams.

4.1 Competition Area Layout

DMPs are tested in an indoor competition area (about 7 m× 7 m) where part
of the ground may be uneven (within 3 cm of ups and downs) and there may
be some obstacles on the floor. Obstacles include, but are not limited to: hollow
obstacles (such as arches), furniture, small common objects, or even moving
persons. Large obstacles such as arch and furniture are part of the field.

Figure 3 illustrates the setup of the competition area, where there are two
sets of double arches (the greed blocks). The 10 landmarks (the red points in
Fig. 3) are given as shown in Fig. 3. Among these landmarks, six are located on
the arches and the other four are located in the corners. The coordinates of the
landmarks in the MoCap system are provided for the participants to map the
local coordinates of their robot to the coordinates of the MoCap system.

The double arch is shown in Fig. 4. The door width is 100 cm. There is a slider
for each door, the height of which is adjusted randomly by the referee before a
test in competition. A robot must decide autonomously whether it is able to go
through a door according to its own height and the height of the slider on the
door. In this case, the robot has to provide the capability of perception of 3D
environment and reaction to dynamic environment. Besides, there is a plastic
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Fig. 4. The double arch.

bar (1.5 cm heights) at the bottom of each door. Robots go through a door may
take a risk of being blocked by the bar, which is a trick to test their traversable
ability.

Fig. 5. Competition area

The MoCap system and four HD video cameras were installed for the compe-
tition, covering the whole competition area (showed in Fig. 5), by which robots’
movement data and videos were recorded, in real time, from beginning to end.
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4.2 Stage I Test

In stage I, robots are allowed to use only odometry as sensor. The robots are
required to do two separate actions (moving in a straight line and turning at a
given spot) under each payload condition: empty, 10 kg, 20 kg (showed in Fig. 1).
Based on the feedback from the odometry of the robot and the measurement
data collected by the MoCap system, the accuracy of the robot’s movement
for performing the tasks is computed. Each team is encouraged to try an extra
payload once, which must exceed the maximum routine at least 20 kg, by given a
bonus score. According to the movement errors measured by the MoCap system,
each robot performance can be evaluated by being compared to the minimal error
among all the teams under the same payload condition (Fig. 6).

Fig. 6. Loads Fig. 7. Obstacles

A final score for each team is computed by normalizing the scores of their
performance under different load conditions with different score weights (showed
in Table 1).

Table 1. The score weight under different load conditions.

Load 0 kg 10 kg 20 kg ≥40 kg

Score weight 0.2 0.3 0.5 0.2 (bonus)

4.3 Stage II Test

In stage II, a robot is allowed to use sensors besides the odometry to build a
global map of the field before test. The map will also be used for evaluating
the robot’s performance. In the competition area, the robot is required to reach
7 way-points in the correct order (specified by the referee) under each payload
condition: empty, 10 kg, 20 kg. The robot trajectory is recorded, and the distance
between each way-point and robot stop point is measured by the MoCap system
automatically. Before each team test, obstacles (showed in Fig. 7) in the field
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and sliders on the arches are rearranged. A team gets punished when the robot
colliding with obstacles or facilities in the field, and rewarded when the robot
successfully passing through an arch.

The task in the final test is similar to that of stage II, but is more difficult,
by adding more obstacles into the field and decreasing the maximum acceptable
distance error.

5 Analysis of Team Performance

There were 10 qualified teams (partly showed in Fig. 8) participated in the BSR
challenge. All the teams completed stage I test. Moreover, 7 teams could bear
the payload of 40 kg. Table 2 shows the average and minimal motion errors.
According to Table 2, the average motion errors (both distance and direction
error) increases with the weight of the payload, which indicates that the payload
has effect on the motion accuracy. Additionally, from the Table 2, we can see
that some teams could achieve quite small motion errors under different payload
conditions.

Fig. 8. Participating teams and robots

Table 2. Average and the minimal motion error in stage I

Load 0 kg 10 kg 20 kg

Distances error (mm per 1 m) Average 3.7 4.96 9.88

Minimal 0.5 0.25 0.25

Best team 0.5 0.32 0.25

Direction error (degree per a round) Average 7.18 7.97 8.31

Minimal 0.35 0.47 0.42

Best team 0.35 0.47 0.42
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Since tests in stage II and final involved the localization and navigation
abilities, perception sensors had great influence on the robot performance. Being
limited by the cost restriction (1, 600 USD), robots can’t be equipped with
high price LRFs (e.g. Sick LMS100, HOKUYO URG-04LX, etc.). RPLIDARs3,
a kind of low-cost 360 degree LRF, and kinects were commonly used among
teams. According to the sensor configurations, teams can be divided into three
categories: teams with a low-cost LRF, teams with a kinect, and teams with a
low-cost LRF and a kinect. As tasks in stage II and the final test were the same,
their results are combined and analyzed according to the sensor configurations.

Table 3 presents the statistical results of stage II and the final test. From this
table, it is evident that teams with a low-cost LRF got smaller motion errors
and fewer collisions than teams only equipped with a kinect. This is because
that the kinect provide depth data only in a limited distance interval (typically
from 0.3 m to 5 m), however, the low-cost LRF can offer better observations
in 2d point cloud. The Passing Door column of Table 3 shows that only teams
equipped with both a low-cost LRF and a kinect could successfully make passing
door actions.

Table 3. Statistical result in stage II and the final test

Sensor Number of Average Minimale Collision Passing door

configuration teams error (m) error (m) (number of times) (number of times)

Low-cost LRF 4 0.26 0.08 4 0

Kinect 3 0.47 0.29 7 0

Low-cost LRF Kinect 3 0.24 0.08 3 4

6 Discussion and Future Work

Our goal is to establish a set of synthetical benchmarks for DMPs, as a matter of
fact, the BSR challenge had some limitations. Although, we proposed a set of key
features of DMPs, these features can’t cover every aspect of service robot bench-
marks. In the future, we are going to broaden the scope of key features of DMPs,
allowing more features (e.g. moving velocity, battery capacity) being evaluated.
Moreover, the BSR challenge only evaluated the motion accuracy of a robot.
More aspects such as time consumption will be included in the benchmarking
scope, impelling teams to make trade-offs in these performance factors.

A comprehensive service robot benchmarking system contains three differ-
ent levels: feature/ability benchmarking, subsystem benchmarking and system
benchmarking. As an integrated system, the overall performance of a service
robot not only depends on the performance of each single feature/ability, but
also depends on the integration of single feathers/abilities and subsystems. But,
only the feature/ability benchmarking was involved in the BSR challenge. More
effort will be devoted to subsystem and overall system benchmarking.
3 http://www.robopeak.com/.

http://www.robopeak.com/
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The BSR challenge was a combination of benchmarking test and competition.
However, ranking-oriented property of competition is a significant disadvantage
for benchmarking. Attracted by the ranking, teams may develop solutions that
converge to “local optimum” performance, by exploiting the vulnerability of
rules. In the future, efforts need to be made both on organization and rules
changes to overcome this drawback.

7 Conclusion

Robotic competitions play an important role in benchmarking robot systems,
and hence provide a basis for this effort. However, most of existing bench-
marking tools are qualitative, while in many cases quantitative evaluation is
needed. Synthetical benchmarking consists of both qualitative and quantitative
aspects, such as task completion, accuracy of task completions and efficiency of
task completions, about performance of a robot. This paper presents our idea
of introducing synthetical benchmarking into evaluation of service robots and
a first realization of our synthetical benchmarking system on domestic mobile
platforms. The system includes a set of algorithms for collecting, recording and
analyzing measurement data from a MoCap system. We used the system as the
evaluator in the BSR challenge, in which 10 teams participated. The competi-
tion was organized mainly as a comparative study on performance evaluation of
domestic mobile platforms. An analysis of teams’ performance is also given in
the paper. Observations and future directions are made from the analysis.
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