This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS

Decentralized Patrolling Under Constraints
in Dynamic Environments

Shaofei Chen, Feng Wu, Lincheng Shen, Member, IEEE, Jing Chen, and Sarvapali D. Ramchurn

Abstract—We investigate a decentralized patrolling problem
for dynamic environments where information is distributed
alongside threats. In this problem, agents obtain information at a
location, but may suffer attacks from the threat at that location.
In a decentralized fashion, each agent patrols in a designated area
of the environment and interacts with a limited number of agents.
Therefore, the goal of these agents is to coordinate to gather as
much information as possible while limiting the damage incurred.
Hence, we model this class of problem as a transition-decoupled
partially observable Markov decision process with health con-
straints. Furthermore, we propose scalable decentralized online
algorithms based on Monte Carlo tree search and a factored
belief vector. We empirically evaluate our algorithms on decen-
tralized patrolling problems and benchmark them against the
state-of-the-art online planning solver. The results show that our
approach outperforms the state-of-the-art by more than 56% for
six agents patrolling problems and can scale up to 24 agents in
reasonable time.

Index Terms—Decentralized patrolling, multiagent systems,
planning under uncertainty and constraints, transition-dependent
partially observable Markov decision process (TD-POMDP).

I. INTRODUCTION

ULTIPLE unmanned aerial vehicles (UAVs) are

increasingly being used to carry out situational aware-
ness tasks in the aftermath of major disasters [1]-[5], such
as the Haiti earthquake of 2010 and typhoon Haiyan in
2013. In a disaster response system [6], satellite imagery and
crowdsourced reports from members of the public can be pro-
vided as low quality a priori information about the situation.

Manuscript received April 13, 2015; revised September 23, 2015 and
December 1, 2015; accepted December 3, 2015. The work of S. Chen was
supported in part by China Scholarship Council for sponsoring his visiting
study in the University of Southampton, in part by the Hunan Provincial
Innovation Foundation for Postgraduate under Grant CX2013B013, in part
by the National University of Defense Technology for Outstanding Graduate
Innovation Fund under Grant B130302, and in part by the National Natural
Science Foundation of China under Grant 61403411. The work of L. Shen
and J. Chen was supported by the National Natural Science Foundation of
China under Grant 61403411. The work of S. D. Ramchurn was supported by
the Engineering and Physical Sciences Research Council through ORCHID
Programme under Grant EP/I011587/1. This paper was recommended by
Associate Editor Q. Shen.

S. Chen, L. Shen, and J. Chen are with the College of Mechatronics and
Automation, National University of Defense Technology, Changsha 410073,
China (e-mail: chensf005@163.com; sc16g13 @ecs.soton.ac.uk).

F. Wu is with the School of Computer Science and Technology, University
of Science and Technology of China, Hefei 230026, China.

S. D. Ramchurn is with the School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, U.K.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2015.2505737

Given this, emergency response agencies determine a set of
specific locations where further information is needed or where
should be continuously monitored. UAVs are then deployed
to gather recent and high quality information at the desig-
nated locations as quickly as possible in order to support
an ongoing operation. However, such patrolling problems are
often liable to a high degree of dynamism (e.g., fires may
spread, wind direction may change) and uncertainty (e.g., it
may not be possible to completely observe the causes of fires
or locations of casualties may not be exactly known), and
may also contain a number of hazards or threats for the UAVs
(e.g., UAVs may fly close to buildings on fire or debris may
fall on the UAVs). Hence, the key challenges in such patrolling
problems are twofold. First, the UAVs cannot cover the entire
area at all times, so the dynamics and uncertainty of the mon-
itored phenomena need to be identified to predict the parts
of environmental conditions that cannot be sensed directly.
Second, the UAVs must coordinate their behaviors in order
to collect the most informative measurements as accurately
as possible while limiting the damage to the UAVs caused
by threats. The work in [7] has considered these challenges
and proposed a centralized approach for multiagent patrolling.
However, this centralized fashion may not be desirable in dis-
aster response situations because it creates a single point of
failure, thereby increasing the vulnerability of the information
stream.

In this paper, we focus on decentralized patrolling problems
where each agent has its own patrolling area and each area
may overlap with some others. Disaster responders typically
choose to deploy in such ways to minimize the risk of colli-
sions and to satisfy air traffic regulations. Given this feature,
we show that agents only have to interact with small subsets
of the other agents to achieve global welfare, demonstrating
sparse interactions (i.e., each agent has limited interactions
with a small number of neighbors). The coordination of mul-
tiple agents with sparse interactions is typically addressed
as a distributed constraint optimization problem (DCOP) [8].
In particular, as an approximation approach, the max-sum
algorithm [9] has shown to be effective and efficient for
solving large DCOPs.

However, on its own, max-sum does not cater for the
uncertainty underlying the operation of UAVs. In turn,
decentralized partially observable Markov decision process
(Dec-POMDP) [10] offers a framework for sequential mul-
tiagent decision-making under uncertainty, which also char-
acterizes incomplete or partial information of the environ-
ment and other agents due to limited or no communication.

2168-2267 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:chensf005@163.com
mailto:sc16g13@ecs.soton.ac.uk
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

However, the high complexity makes the scalability of
Dec-POMDPs limited [10] (see Section II-B for more details).
Moreover, there is relatively little research on constrained
Dec-POMDP [11], capturing situations where there is one cri-
terion (reward) to be maximized while keeping other criteria
(costs) below the prescribed thresholds during the process.

Against this background, we propose a new model for
decentralized patrolling under uncertainty and threats and
develop a novel algorithm to solve this model. In more detail,
we first represent the patrolling problem with a graph, where
the information and the threat at each location (vertex) are
independently modeled as multistate Markov chains (which
captures the nonstationary! feature), whose states are not
observed until the location is visited by an agent (which cap-
tures the partially observable? feature). Then, we cast the
planning problem as a constrained Dec-POMDP and solve it
with an efficient online algorithm.?

Given this, we first propose transition-decoupled POMDP
with health constraints (TD-POMDP-HCs), our decentralized
formulation of multiagent patrolling under health constraints
in nonstationary environments, which is a special case of
constrained Dec-POMDP. We then design scalable online algo-
rithms that incorporate Monte Carlo tree search (MCTS) [12]
and the max-sum algorithm [13] to exploit sparse agent inter-
actions. In more detail, this paper advances the state-of-the-art
in the following ways.

1) We propose the first formal model for decentralized
patrolling under uncertainty and threats. Our formulation
not only captures the partially observable and nonsta-
tionary features of the dynamic environment and the
health status of the patrolling agents, but also explicitly
accounts for the fashion of decentralized patrolling.

2) We design scalable decentralized online algorithms
based on MCTS and max-sum to solve TD-POMDPs.
The novelty of this approach lies in the design that
each agent constructs a look-ahead tree and these agents
expand and update their own trees in a decentralized
manner by passing messages to each other.

3) We empirically evaluate our algorithms in simulations
and show that they outperform the benchmark by more
than 56% for six agents patrolling problems and can
scale up to 24 agents in reasonable time.

The rest of this paper is structured as follows. First, we
present the background and the related work in Section II
and introduce the process of situational awareness in disas-
ter response in Section III. We then define the model of the
patrolling problem in Section IV and formulate the decision-
making problem as a TD-POMDP-HC in Section V. Next,
Section VI describes the decentralized online planning algo-
rithm. Given this, we discuss the variations of our model and

1Nonstationary indicates that the joint state distribution of underlying state
of the environment does not change over time.

2Partially observable indicates that agents cannot directly observe the
underlying state of the environment.

3In contrast to offline planning algorithms where the whole plan is com-
puted offline, “online planning algorithm” is a standard term in artificial
intelligence referring to the case where the agent interleaves planning with
execution in a single decision cycle.

IEEE TRANSACTIONS ON CYBERNETICS

algorithm in Section VII and evaluate these approaches in
Section VIII. Finally, we conclude this paper in Section IX.

II. BACKGROUND AND RELATED WORK

In this section, we first review the literature on multi-
UAV patrolling. Then, we present the background on
the TD-POMDP model and other similar frameworks.
Furthermore, we describe the MCTS approach to solving
POMDPs that we reuse later.

A. Multi-UAV Patrolling

A number of coordination algorithms have been developed
for UAVs to continuously collect and provide up-to-date situa-
tional awareness [3], [14], [15]. Given dynamic environments,
previous works [3], [14] consider fully observable (agents can
directly observe the underlying state of the environment) sta-
tionary models (the joint state distribution does not change
over time). A partially observable nonstationary model has
been proposed by Ny et al. [15], where an agent can only
perceive the exact state at its current position. However, these
approaches do not consider the health status of agents and the
damage that agents may suffer while patrolling.

The work in [7] has considered a general problem of mul-
tiagent patrolling under threats, whose method runs in a cen-
tralized fashion. It is worth noting that our formulation mainly
extends [7] to decentralized patrolling and casts the problem
as a TD-POMDP-HC, which is a special case of constrained
Dec-POMDP. Compared with the centralized approach in [7],
there is no central point of failure and no communication
bottleneck in our decentralized patrolling. However, to the
best of our knowledge, developing scalable approaches to
solve Dec-POMDPs is still an open problem. Fortunately,
models of Dec-POMDPs with sparse interactions have been
shown to be more scalable than general Dec-POMDPs
and our problem has the nature of sparse interaction.
We next review the models of Dec-POMDPs with sparse
interactions.

B. Transition-Decoupled POMDPs

Dec-POMDP is a natural extension of Markov decision
process (MDP) and partially observable MDP (POMDP) to
cooperative multiagent settings. While several approaches
have been proposed on the scalability of solvers for
POMDPs [16]-[18], the computational complexity of solving
a Dec-POMDP is significantly higher than that of a POMDP
(NEXP-complete [10] versus PSPACE-complete [19]).
However, many practical applications suggest that agents
have sparse interactions, which show better scalability while
preserving optimality. For example, several models have been
proposed to capture the sparsity of interactions. Transition-
independent reward-dependent models have been developed
for transition-independent DEC-MDP [20] and network
distributed POMDPs [21], where agents only influence
one another through their reward functions. Transition-
decoupled POMDPs (TD-POMDPs) model the problems
with weakly-coupled transition-dependent agents [22].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: DECENTRALIZED PATROLLING UNDER CONSTRAINTS IN DYNAMIC ENVIRONMENTS 3

TD-POMDPs provide a more natural representation of inter-
actions. However, current approaches for Dec-POMDPs with
sparse interactions generate solutions in an offline fashion
and no algorithms consider constrained problems. Therefore,
we consider the patrolling problems with sparse interactions
represented as TD-POMDPs with constraints and consider
online methods using a simulator. We next review how MCTS
solves general POMDPs in an online fashion.

C. Monte Carlo Tree Search for POMDPs

We design MCTS-based online algorithms in this paper
as MCTS has been shown to outperform other planning
approaches in many challenging problems [23]. In particu-
lar, partially-observable Monte Carlo planning (POMCP) [12],
an MCTS-based algorithm, has been successfully applied for
single-agent online planning in large POMDPs. POMCP runs
by repeatedly performing simulation trials originating from
the current belief to incrementally build a look-ahead tree.
An unweighted particle filter is used to approximate the belief
state. Simulations are performed by using the partially observ-
able upper confidence bounds for trees algorithm [12]. For
every history & (history of actions and observations) encoun-
tered during a simulation, actions are selected to maximize
the upper confidence bounds. Moreover, POMCP has been
shown to perform well in large domains with a limited number
of simulations and its convergence is satisfied as long as the
samples are drawn from the true belief state [12]. In addition,
POMCP has been extended by [24] in order to solve multi-
agent POMDPs (MPOMDPs), which assume all agents fully
communicate with each other to share their view of the world.
Instead, our problem only allows the agents to communicate
with their adjacent neighbors.

III. SITUATIONAL AWARENESS IN DISASTER RESPONSE

This section introduces the process of situational awareness
in disaster response. In particular, we explain the process of
using a priori information to generate a set of targets for UAVs
to patrol.

As introduced in [6], emergency response agencies are typi-
cally hierarchical, military-style organizations that employ the
observe-orientate-decide-act framework [25], [26], which is a
well established information gathering and decision making
process for deployments in dynamic environments. The main
objectives of the response efforts are decided by decision mak-
ers at the strategic level, while the allocation of resources and
tasks are decided by a command team at the tactical level.

For situational awareness in disaster response, the process of
UAV mission planning (as shown in Fig. 1) is designed in col-
laboration with emergency responders such as Rescue Global
and Hampshire County Council. First, prior information about
the environment is collected from various resources, and then
used to help the commanders to generate targets where more
detailed information needs to be collected by UAVs. In partic-
ular, maps of roads and key amenities in the disaster area and
weather reports can help the commanders to predict the oper-
ation situation of the UAVs. Moreover, crowdsourced reports
are gathered from online crowdsourcing platforms such as

Satellite Imagery Crowdsourced Maps Weather Reports
= Data collection e
mfm Raki l
Priori Information
Generate targets to patrol Send out UAVs

® Y b 7
— A

& &

Fig. 1. UAV mission planning for situational awareness in disaster response.

Twitter* or Ushahidi.> Combined with satellite imagery, this
information provides low quality a priori information. Given
this, the commanders designate a set of distributed targets, then
dispatch the UAVs to continuously patrol and gather recent and
high quality information at these targets. Hence, this paper fea-
tures the problem of how to use the limited number of UAVs to
execute patrolling in the dynamic and uncertain environment
where information is distributed alongside threats.

Thus, we have presented the process of situational aware-
ness in disaster response, and illustrated the function of UAVs
patrolling in this process. The following sections define and
solve the patrolling problem.

IV. PATROLLING PROBLEM

This section introduces our patrolling problem by defining
the physical environment and patrolling agents. In particular,
we build upon the model of the patrolling environment defined
in [7] and extend it by defining the decentralized interaction
and cooperative performance of patrolling agents.

A. Patrolling Environment

The physical patrolling environment is defined by its spatial,
temporal, and dynamic properties. In particular, in the after-
math of a disaster, a number of specific sites might need urgent
attention and access to these sites may be limited to certain
areas (e.g., due to trees, debris, or natural obstacles). Hence,
we can capture such features in terms of paths along which
agents can travel from one disaster site to another. Specifically,
the spatial property of the environment is encoded by a graph,
which specifies how and where agents can move.

Definition 1 (Graph): We model the environment as an
undirected graph G = (V, E). Spatial coordinates of the posi-
tions V are embedded in Euclidean space and edges E encode
the possible movements between them. We denote the number
of the vertices as N, i.e., N = |V]|.

In disaster response, each disaster site (or target) is a vertex
in the graph, and a traversable area between a pair of sites is an
edge of the graph. Given the process of situational awareness
that was introduced in Section III, the graph can be created
by the commanders based on the prior information.

4http://www.twitter.com
5http://wwwlushahidi.com

http://www.twitter.com
http://www.ushahidi.com

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4
0.1 0.2 0.2
YO I OIOROL
0.2 0.2 0.1

(a) (b)
Fig. 2. Example of information and threat models at a vertex. (a) Threat

model with two states (i.e., Ry and R»). (b) Information model with three
states (i.e., I1, I», and I3), where the probabilities that each information/threat
state changes to another over a time step are given (e.g., the probability that
R changes to R, is 0.1).

Definition 2 (Time): Time is modeled by a set of time steps
{1,2,...,T} and at each time step ¢ € {1, 2, ..., T} the agents
visit some sites in the environment.

To capture the dynamic attributes of the environment, we
assume that each vertex holds two states: one for information
and one for threats.

Definition 3 (Information State Variable): An information
state variable ¢! indicates different levels of the information
at a given vertex v € V.

For example, how many people need help and what is the
status of a bridge are information state variables in the disaster
response scenario.

Definition 4 (Threat State Variable): A threat state vari-
able eR reflects the level of damage an agent suffers when
visiting a given vertex v € V.

For example, the level of fire and the degree of smog are
typical threat state variables in disaster response.

Definition 5 (Markov Model of Information and Threat):
The two state variables at each vertex change over time
according to discrete-time multistate Markov chains.

To capture the transitions of the state variables, we employ
a Markov chain model. Specifically, for a Markov chain
with K states § = (51, S2, ..., Sk), the matrix of transition
probabilities for pairs of states is defined as

P11 P1K

P21 P2K
P =

PK1 PKK

where pj; is the probability that threat state S; transitions to
S; in one time step and S;, S; € S. Next, we present the Markov
models of information and threat. An example of the informa-
tion and threat models at a vertex is shown in Fig. 2. Thus,
Fig. 2(a) shows a threat model with two states (i.e., R and R»)
and Fig. 2(b) shows an information model with three states
(i.e., I1, I, and I3), where the probabilities that each informa-
tion/threat state changes over a time step are given (e.g., the
probability that Ry changes to R, is 0.1).

The set of information states I" = {I{, I, ... ,II”(;,} for loca-
tion v, corresponds to Kj stages of information values which
agents obtain when visiting a given location. The value of
information is determined by the function f* : I — R™. The
information state at a given vertex independently evolves as
a Kj-state Markov chain model with a matrix of transition
probabilities Pj.

IEEE TRANSACTIONS ON CYBERNETICS

Similarly, the set of threat states R" = (R}, R}, .. "RnK,%}
indicates Ky threat levels of vertex v, € V. The “damage”
that an agent suffers when visiting vertex v, is captured by
the function ¢ : R — R*. The threat state at a given vertex
independently evolves over time as a Kj-state Markov chain
and the matrix of transition probabilities is Pl.

To bootstrap the information and threat models, we rely
on system operators’ understanding of the unfolding situa-
tion. Specifically, in disaster response, responders typically
collect some information about the environment from var-
ious resources (such as satellite imagery, weather reports,
and crowdsourced reports) before patrolling. Hence, this prior
information can be used to build a statistical model of infor-
mation and threats by various machine learning techniques
(such as independent Bayesian classifier combination [27] and
Gaussian process) [28]. Although this statistical model is only
our initial guess of the true models, it is still helpful to make
an initial schedule for the agents. Once more accurate infor-
mation is obtained and the model is updated accordingly, our
online planning method is able to adjust the agents’ patrolling
schedules based on the new model. This is indeed one of the
advantages of our online planning algorithm.

Having modeled the environment in which the agents
operate, we next elaborate on the agents’ behaviors and goals.

B. Patrolling Agents

Patrolling agents are situated in the patrolling environment
defined above.

Definition 6 (Patrolling Agent): A patrolling agent (agent
for short) is a physical mobile entity capable of gathering
information, and may get damaged by the threat when vis-
iting a vertex. The set of all agents is denoted as M =
(A1, ..., A

Definition 7 (Patrolling Area): Each agent A,, € M has a
relatively small designated patrolling area g, = (Viu, En),
which is a subgraph of G. Each patrolling area overlaps with
some other patrolling areas.®

Two examples of the division of the patrolling areas are
shown in Fig. 3.

Definition 8 (Health Budget): We define a limited health
budget B, € R for agent A, € M during the patrolling
process lasting 7' time steps.

The movement and visit capabilities of the agents are
defined as follows.

Definition 9 (Movement): When patrolling in a graph G,
each agent A,, is positioned at a given vertex in g, at each
time step . Multiple agents can occupy the same vertex.” The
movement of each agent is atomic, i.e., takes place within the
interval between two subsequent time steps, and is constrained
by gm, i.e., agent A,, positioned at a vertex v; € Vj, can only
move to a vertex v; € adj om (v;) that is adjacent to v; in g,,. And
we assume that Vv; € V., v; € adjgm (vj), i.e., an agent can also

5The patrolling areas overlap with each other because different agents may
be equipped with different types of sensors and some areas need to be patrolled
with different types of sensors to gather different but related datasets.

TFor example, each vertex can be a room that can host multiple patrolling
robots. This is useful if they have different types of sensors or some objects
need to be observed simultaneously from different angles.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: DECENTRALIZED PATROLLING UNDER CONSTRAINTS IN DYNAMIC ENVIRONMENTS 5

Fig. 3. Example of (a) six agents patrolling and (b) 12 agents patrolling,
where each envelope covers the patrolling area g;,, of each agent A, and
square vertices are the current positions of agents.

stay at the same vertex. The speed of the agents is sufficient
to reach an adjacent vertex within a single time step.®

Definition 10 (Visit): Each agent A,, visits its current vertex
v, at each time step. On the one hand, this makes the agent
aware of the current information and threat state at v,, such as
I and R]’?, respectively. On the other hand, this agent obtains
a reward f"(I1"), and suffers a loss " (R;’) from its health bud-
get By,. The time it takes to visit a vertex is assumed to be
negligible.

As the states at each vertex change over time and agents
can only access the exact states at the vertices that they visit,
the patrolling environment can be considered nonstationary
(i.e., joint probability distribution of its states may change
when shifted in time) and partially observable.

The interaction and coordination among the agents can be
described as follows.

Definition 11 (Neighbor): A neighbor of agent A, is an
agent whose patrolling area overlaps with that of A,. We
denote M,, € M as the set of neighbors of agent A,, and
assume that A,, € M,,.

Definition 12 (Communication): Each agent A,, can only
communicate with its neighbors.

Definition 13 (Cooperative Performance): To value the
cooperative performance of gathering information with
different numbers of agents at the same time, we assume that
there is a function « : {0,...,|M]|} — [0, 1]. Then a(n)
denotes the amount of information that can be obtained by n
agents for one time step, where these agents are visiting this
location together and n € {0, ..., |IM|}.

Thus, all the agents need to coordinate with each other based
on their observations in order to optimize cooperative perfor-
mance. Specifically, the goal of the agents is then to gather
as much information as possible while limiting the damage
incurred within the health budget.

Given the definition of patrolling environment and patrolling
agents, we summarize the patrolling problem as the follow-
ing scenario. The group of patrolling agents M is gathering

8If the distance between two vertices is too far for the agents to reach with
its maximal speed, we can simply add another vertex between them where
no information needs to be collected.

information over the N > | M| locations in the patrolling envi-
ronment. While the agents obtain the information at a location,
they may suffer attacks from the threat at that location. The
information and threat at each location are independently
evolving as multistate Markov chains, and the agents only
know the state at the locations with certainty when some agent
actually visits it. However, given the transition matrices of
these Markov chains, the agents can estimate the states of the
locations that are not visited by any agent at a given period.
Through this model, the agents continuously select the loca-
tions to visit based on the current situation of the agents and
the environment.

Having defined the patrolling problem, we now need a
decentralized approach for each agent to plan its sequen-
tial patrolling actions based on the history of actions and
observations of its neighbors and the model of the environ-
ment. Hence, in what follows, we propose the formulation
TD-POMDP-HC for patrolling within a graph and then design
algorithms to solve it.

V. TD-POMDP-HC MODEL

In this section, we first propose the TD-POMDP framework
for multiagent patrolling without constraints. Given this, we
then incorporate health constraints into the framework.

A. TD-POMDP Formulation

We now set up our problem of multiagent patrolling in a

graph as a TD-POMDP (M, S, A, O,7,Q,r, T) as follows.

1) M ={Ay,...,Ap} is the set of agents. M,;, C M is
the set of neighbors of agent A,, € M.

2) S is the set of states, which models the positions of
the agents and the information and threat states at
all the vertices in the environment. There is a par-
ticular grouping of state features into local features
that make up an agent’s local state. We denote A,,’s
local state as s, which is comprised of two sets:
Sm = {(em, V). The set of uncontrollable features e,, =
((eﬁ1 , eﬁz,), (efm , e{nz, ...)) contains the information
and threat states at the vertices of the patrolling area g,
for agent A,,. e, is not controllable by any agent, but
may be observable by multiple agents.” The set of local
features v, contains the positions of agents M,,. v,, is
controlled not only by agent A,,, but also by the other
agents in M,,.

3) Ais the set of joint actions. A = X|<;<|amAm, Where
A, s the set of actions of agent A,,. Each joint action
a is defined by (a1, ..., an), where a, € A,. We
denote apq,, as the joint action of agents M,,. Agent
A, selects an adjacent vertex in its patrolling area to
visit or “do nothing”!? as an action a,,.

4) O is the set of joint observations. O = X |<p<|AM|Om,
where O, is the set of observations of agent A,,.
Each joint observation o is defined by (01, ..., 0/Mm|).

9Examples for uncontrollable features of other problems include time-of-
day or temperature.

10An agent can only perform the action do nothing when it is dead, which
will be discussed later.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

where o, € O,. An observation of agent A, is o,
which captures the position of A, and the information
and threat state at that position. 0, could be seen as a
part of sy,.

5) T is the set of joint transition probabilities. 7 (s'|s, a) =
Hlimi\Ml Tm(S;n|Sm, a,/\/lm), where In(s;n|Sm’ a,/\/l,,,) =
Tn(e),lem) TV, |[Vvm, apg,,) is the local transition func-
tion of A,,. Based on the Markov models defined in
Section IV-A, we know that 7,,(e),|e,) follows the
discrete-time Markov process. 7, (V,, |V, a M,) = 1
if s;n is the destination of the action apy,,, otherwise
T}y lPm. aps,,) = 0.

6) Q is the set of joint observation probabilities.
Qols,a) = HISmSIMI Q. (0m|Sm, am) is the proba-
bility of jointly observing o after taking joint action
a in joint state s. As an observation o, of agent A,
is directly a part of some local states, the observation
probability €2,,(0m|Sm, am) = 1 if o0, is consistent with
the corresponding part of s, and €2,,(0|Sm, am) = 0
otherwise.

7) r:SxA— R is the decomposable reward function.
r(s,a) = Y, 'm(Sm, am) is the reward of taking action
a in state s. We define 7y (s, am) = o(ny,)/nyf'(el)
as the information value obtained by agent A,,, where
Vi € s, 1s the current position of A,, and n,, is the num-
ber of agents visiting v; and «(n,,;) denotes the amount
of information that can be obtained by the agents at
this position. Then, we can get the reward of all agents
r(s,a) =Y, rm(Sm, am) = th_e‘; a(nvi)fi(e{),ll which
is the sum of the information values obtained by all the
agents, where v is the set of all the current positions of
all the agents.

8) T is the planning horizon.

A history & is represented as a sequence of joint actions and
observations of all the agents. A solution to TD-POMDP is
specified as a joint policy w = (my,...,mAq)), Where my,
(agent A,’s policy) maps the joint history of agents M,,
to a probability distribution over the actions of agent A,,.
The joint policy value function V7 (h) is the expected reward
accumulated from time ¢ onward when following policy .

Theorem 1: The value function of our TD-POMDP can be
factored as

IM|
VI(h) =Y Vi (h,,))

m=1

where 7, and h a4, are, respectively, the joint policy and the
history of agents M,,, VM (h M,,) is the value function of
agent A,,, which is the expected reward accumulated from the
joint history ha4, onward when agents M,, following w4, .

Proof: As the definition of our TD-POMDP model is
a special case of the model in [22], in our formulation,
agents have local parameters [factored local state v, and
rewards rp,(s;,, a,) for each agent A,,]. However, v, depends
on not only the actions of A,,, but also the other agents’

11Here, the defined reward only factors the obtained information value. We
will formulate the cost of threats in the health constraints of the model in
Section V-B.

IEEE TRANSACTIONS ON CYBERNETICS

actions (movements). As described in [22], the dependency
among agents is described using an influence directed acyclic
graph (DAG), where each node is an agent. A parent—child
relationship in this DAG implies that the child’s local states
are controllable by the parent, but not vice-versa. Given its par-
ents’ policies, an agent can compute its value function. In our
representation, this translates into a value factor for each agent
A,,, which consists of A,, and all its ancestors in the DAG.
The joint-value decomposition along value factors is straight-
forward. A summary of an agent’s influence on its immediate
children can be compactly represented as an influence dynamic
Bayesian network [22]. Thus, given a specific joint policy, the
patrolling environment is redivided into nonoverlapping areas
for the agents to patrol. Intuitively, VM (h M,,) indicates that
the accumulated utility acquired by agent A,, patrolling its
area, while the total value V7 (h) is the sum of the utilities of
all the agents patrolling these nonoverlapping areas. |

B. TD-POMDP With Health Constraints

We define a limited health budget §,, for each agent A,, € M
during the patrolling process lasting 7' time steps. A history
hy, is represented as a sequence of actions and observations
of agent A,,. For action a,, and observation o,,, the agent A,,
suffers an instantaneous damage ¢, (@, o) = ¢! (ef.e), which is
associated with the threat state eX at its position v;. We denote
its remaining health budget for history A, as

t
b)) = B = Y Cm(amk Omi)- (©)
k=1
Then, the health constraint of agent A,, needs to be incorpo-
rated when making decisions based on the history #,,,

T

st BTN cnlames on) | < buh). ()
k=t+1

Given the above, we propose TD-POMDP-HCs which
extends the TD-POMDP formulation in the following ways.
First, we augment the local state of agent A, with a set of
variables Em = (bm,, bim,, ...,), where b,,; keeps track of the
remaining health budget for agent A,,, € M,,. by, is initial-
ized to the total budget B,,. Then, in the transition model,
when a joint action aay, is taken, the damage suffered by
agent A,,;, € M,, will be deducted from the corresponding
remaining budget by, < (b, — cm(am;, om;)). We then aug-
ment the action space A, of agent A, with an action do
nothing. When b,,, < 0, agent A,, can only perform the
action do nothing and is deleted from the set of agents. The
remaining agents continue to patrol until the set of agents is
empty or the terminal time point 7 is reached. We denote the
set of remaining budgets of agents M, for history hpq, as
bu(h M,,)- Thus, the health budget is modeled as a local state
of each agent and updated stochastically based on the threat
model given the action and observation of the agent. A key
goal of a constraint for our patrolling problem is to keep the
expected damage below the agent’s current health budget (3).
However, the expected damage and the future policy of each
agent are interdependent (i.e., the expected damage depends

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: DECENTRALIZED PATROLLING UNDER CONSTRAINTS IN DYNAMIC ENVIRONMENTS 7

on the agent’s future policy and must be subject to the health
constraint). Therefore, in our algorithm for TD-POMDP-HC,
we use Monte Carlo simulation to generate the policies while
testing the health constraints (lines 10-12 of Algorithm 1),
which will be introduced in Section VI-B.

Having defined TD-POMDP-HC for multiagent patrolling
under health constraints in partially observable nonstation-
ary environment,'> we next propose a scalable decentralized
algorithm to solve TD-POMDP-HC online.

VI. DECENTRALIZED ONLINE PLANNING

In this section, we first define a factored belief repre-
sentation of the environment state and then propose the
transition-decoupled factored belief based Monte Carlo online
planning (TD-FMOP) algorithm to solve TD-POMDP-HC.

A. Factored Belief of Environment States

As the local state of each agent is partially observable,
the belief state A(hpg,) = (Pr(sm|a,)) for each agent
A;; on joint history hpg, is a statistic to design an opti-
mal policy of the TD-POMDP-HC. In particular, for local
state S, = {(€m, Vi, l_)m>, the elements of v,, and I_Jm are fully
observable while the environment elements e, are not directly
observable. We can define a direct belief representation of the
environment states.'> In more detail, given history A Mm,”
the knowledge of the internal state of e can be summarized by
the belief vector A.(h) = [A1(h), ..., ANum_e(h)], where A;(h)
is the conditional probability that the environment state e is
at the ith and Num_e = []"_, KK} is the number of all the
environment states. However, the dimension of A.(h) grows
exponentially with the number N of the vertices, which makes
the TD-POMDP-HC computationally prohibitive. Fortunately,
a factored belief representation of e, has been proposed in [7]
that grows linearly with the number of the vertices and reduces
the memory usage dramatically.

Here, we introduce the factored belief of environment states.
As the threat and information state variables at each ver-
tex evolve independently, we can find a representation whose
dimension grows linearly with N. Specifically, we define a
factored belief vector for each represented history /a4, as the
conditional probability W (h) = [Wr(h), ¥;(h)], where Wg(h)
is defined as

Wr(h) = (wi(h), ..., wR(h))
%@zwmmmwmw)

1276 note, we are aiming to solve the patrolling problems instead of a
special case of TD-POMDPs because we have relaxed the general assumption
of TD-POMDPs (i.e., allowing local communication) and included an external
component (i.e., having health budgets), both of which are well motivated
from the patrolling problems.

Bywe only define the belief of e, in s;; as it has been shown in [29] that
only the not directly observable part of the state has to be represented as a
belief to design the optimal policy.

14Without loss of generality, we assume that there is M;;, = M and then
h My = h, which simplifies the notations in the rest of Section VI-A.

Algorithm 1 TD-FMOP

1: procedure SEARCH(h)
2: for i = 1 — numSamples do
> Draw a sample of environment state from the factored belief vector.
3: em ~ \I‘m(h) .
4: s < (), b(h), &m) if
5: SIMULATE(sy, h, 0)
6: end for

> Coordinate with the other agents to select an action to perform.
return COORDINATE2 (T}, (h))
. end procedure

%~

9: procedure SIMULATE(sp, h, depth)
> Check that whether the agent dead or not.
10: if by, <=0 then

11: return 0
12: end if
> Coordinate with the other agents to select a local joint action.
13: a* < COORDINATE (T}, (h))
> Use simulator G(sp, @*) to generate the new state s),, the observation 6 and the
reward ry,.
14: (A‘;n~(3, rm) ~ G(sm, @)
15: if Ty (ha*o) == null then
> Update the remaining health by, by Equation (2).
16: b}, < UPDATE(bp)
17: if b, <=0 then
18: bj, <0
19: DELETE(A;)
20: end if
> Update the belief vector Wy, () by Equation (4).
21: U, (hé*6) < UPDATE(W (h), a*, 0)
> Expand the search tree._ R
22: T (ha*0) < (\7;,“ b;ﬂv \Al’m(h?l*f)), Ninit Vinit)
23: return ROLLOUT(s),, ha*0, depth + 1)
24: end if
25: Rin <= rm + SIMULATE(s),, ha*d, depth + 1)

260 Npu(h) < Np(h) + 1

27: Ny (ha™) < Ny (ha™) + 1

28: Vi(ha*) < Vi (ha*) + Rin — Vin (ha*)) /N (hir*)
20: return R,

30: end procedure

31: procedure ROLLOUT(sy, h, depth)

32: ax o~ Trollout (.)

33 (sl b rm) ~ GG)

34: return r + ROLLOUT(s),, hi*0, depth + 1)
35: end procedure

where W;lekl (h) 1is the probability that the threat state at
vertex v, is RZI, and Wg(h) is defined as

i (h) = (wi(h), ..., wY (h))
W) = (Wi (), .. Wi ()

where w?kz (h) is the probability that the information state at
vertex vy is I} . Then, there are SV (KB 4 K] elements in
each W(h), which grows linearly with N. It has been proved
in [7] that W(h;) is a compact representation of A.(h;) for
any h; to design an optimal solution.

Initially, we have probabilistic information about the state
at each of the N vertices. Then, the elements of factored belief
vector W (h) are updated to W(hao) upon joint action a and
observation o as

n _ 7k
wg(hao) = {W;le(h)P;le

if v, € v(hao), sp(h) = R},
if v, ¢ v(hao)
if v, € v(hao), sf (h) = I}/
if v, ¢ v(hao)

~

W (hao) = {”‘ 4)

wi (h)Py
where Vv, € V, R} e R", I € I", and 7k is a unit vector with
the kth item is 1. Py and P} are, respectively, the matrices of
transition probabilities of the threat and information at posi-
tion v,. As shown in (4), the threat belief vector wi (hao) at one

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

affs

affs

Fig. 4. For TD-FMOP, lookahead trees are constructed in parallel and one
for each agent, where each agent A, keeps track of the joint history, actions,
and observations of the group of agents M,,. The agents expand their trees
using MCTS while coordinating with the others for action selections.

vertex v, that some agent visits is updated to i based on the
observation RZ (h) at this vertex, while wj (hao) at some other
vertex that no agent visit is updated by the current threat belief
vectors Wg() and the threat Markov model P}, at this vertex.
For Vv, € V, the update of the information belief w}(hao) is
similar to wi(h).

Thus, we have defined the factored belief, which is a com-
pact belief representation for TD-POMDP-HC. Given this, we
next propose the decentralized online planning algorithm.

B. TD-FMOP Algorithm

Using the representation of the factored belief vector of the
environment and the factored value function (1), we design
the TD-FMOP (see Algorithm 1) based on MCTS for mul-
tiagent online planning. The bottleneck of directly applying
MTCS for multiagent problems is the fact that the number of
joint actions and observations are exponential in the number
of agents, which leads to a look-ahead tree with a very high
branching factor. To combat this problem, we exploit the fac-
tored nature of the value function and construct a number of
trees in parallel, one for each agent. In more detail, in this sec-
tion, we first propose the running procedures of TD-FMOP for
each agent. Then we detail the stages in which the agents have
to coordinate with each other, while introducing the method
that the agents using max-sum to pass messages for decentral-
ized coordination. Given this, we discuss the convergence of
TD-FMOP.

1) TD-FMOP: Instead of constructing a single tree during
MCTS in POMCP for single-agent POMDPs [12], as shown
in Fig. 4, we construct | M| trees in parallel by exploiting the
sparse interactions between the agents, which addresses the
problem of the large number of joint actions and observations.
This technique exploits the structure in multiagent problems
and makes MTCS scale to larger Dec-POMDPs in terms of
the number of the agents. In this section, we propose the pro-
cedures of each agent running TD-FMOP while leaving the
coordination stages to be explained in Section VI-B2.

Each node in the search tree of agent A,, is denoted as
Tu(h) = @ (h)., b (), Wn(h). Nun(h). Vi (). where Vi (),

ISWe denote / as had,,» @ as apg,,, and 0 as o, in Section VI-BI for
short.

IEEE TRANSACTIONS ON CYBERNETICS

l_am(fz), and \Ilm(fz) are the sets of positions, the remaining
healgh budgets, and the factored belief vector gf agents M,,,
N, (h) is the count of the node visits, and V,,,(h) is the value.
Each node Tm(}Az) also contains a value Vm(fza) and a visi-
tation count Nm(lAicAz) for each joint action a, and the overall
count Nyy(h) = 3", N (hd).

The SEARCH procedure (lines 1-8) is called from the cur-
rent joint history iz,. Since ﬁm(izt) and Bm(iz,) are directly
observable, the agent only draws a sample of the environ-
ment state e,, from the factored belief vector \I’m(ilt) for
Monte Carlo simulations (line 3). For every joint history h
encountered during SIMULATION (lines 9-30), the algorithm
checks the remaining health (lines 10-12), selects a joint
action a* by COORDINATIONI (line 13),'6 uses the simula-
tor G(s;y, a*) to generate a new state sl/n, an observation o
and a reward r, (line 14), and updates the factored belief
vector \Ilm(fz) by (4) (line 21). When SEARCH is complete,
the agent selects the action «, from the joint action a*
by COORDINATION2 (line 7) to perform, and receives an
observation o,, from the environment.

To deal with the health constraints for TD-POMDP-HC,
we use this Monte Carlo simulation to generate policies while
ensuring the expected accumulated damage of each agent sat-
isfies the health constraint of (3). In particular, each agent A,,
keeps track of the remaining health budget by (2). At each time
step of a patrolling operation, each agent checks its health
budget and informs its neighbors to delete itself from their
interaction lists if its health budget has run out. Similarly,
during each Monte Carlo simulation in SEARCH procedure
in Algorithm 1, each agent keeps track of the remaining
health budget by (2) (line 16). Once its health budget runs
out (line 17), an agent should inform its neighbors to remove
its actions from their joint actions when expanding the current
node in their trees (line 19).

2) Decentralized Coordination: All the agents run
TD-FMOP in parallel. Two stages are needed for decentral-
ized coordination: 1) COORDINATE] (line 13) is selecting
actions to search/expand the trees within SEARCH and
2) COORDINATE2 (line 7) is selecting actions to perform
after SEARCH.

For each joint history 4 during a SIMULATE, we denote
T(h) = (Ty (hM1)7~--’T|M|(hM‘M|)> as the set of visiting
nodes of all the |M)] trees. For each search/expand step in
each simulation, the agents are searching/expanding their trees
in parallel and actions are selected to maximize the upper
confidence bounds as

IM|
a® = arg max Z Un(hpm,apm,,) 5)

@ m=1
where Uy (hpg,apnm,,) = Vin(hm,,am,) =+
c\/logN(hMm)/N(hMmaMm) and V,,(hp,an,) 1is the
value of agent A, that associated with hpq, and apg,.
After SEARCH, actions are selected by maximizing the

16 A5 the maximization of the local value does not guarantee a good overall
performance of all agents like single-agent MCTS, a coordination approach
is needed for action selections of each agent, which will be discussed later.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: DECENTRALIZED PATROLLING UNDER CONSTRAINTS IN DYNAMIC ENVIRONMENTS 9

(@) (b)

Fig. 5. Corresponding constraint graphs for the scenarios of (a) six agents
patrolling and (b) 12 agents patrolling illustrated in Fig. 3, where a connec-
tion of two agents’ actions denotes that their actions are constrained with
each other as they share an overlapping area and need to coordinate to select
actions.

joint action value

M
a* = argmax Y _ Vi(hp,am,)- (6)

a m=1
We next show that both (5) and (6) can be cast as DCOPs,
and how we can use max-sum to solve them.

3) Action Selection: Here, we define the problem of action
selection as a standard DCOP (M, X, D, V) (see [8] for
more details of DCOPs), where M is the set of agents and
X ={ai, ..., a\} is the set of action variables, each variable
ap is controlled by exactly one agent. D = {Ay, ..., A}
is the set of variable domains, and each variable a,, selects its
actions from A,,. Then, V = {V{, ..., Vim} is the set of func-
tions and we define each function V,,, = V,,,(haq,,a0,,), which
is the mth item of (5) and depends on apq,, C {ai, ..., ar}
The goal of this DCOP is to find an action variable assignment
that maximizes the sum of the functions. Now we have mapped
this action selection problem as a DCOP. For scenarios of six
agents patrolling and 12 agents patrolling illustrated in Fig. 3,
the agents must coordinate their actions to maximize the gath-
ered information in the overlapping areas. Therefore, in the
formulated DCOP above, constraints connect the agents that
share an overlapping area, and Fig. 5 shows the corresponding
interaction graphs.

Algorithms for DCOPs have been successfully applied to
numerous multiagent problems [8]. As an approximation algo-
rithm, max-sum [9] has shown to be effective for large DCOPs,
and is not exponential in the number of agents. We use max-
sum for action selections by (5) and (6) of TD-FMOP. Each
agent A,, is responsible for deciding the action selected by
its own variable a,, and for passing messages to its neigh-
bors. Thus, although max-sum is approximating the solution
to a global optimization problem [i.e., (6)], it involves only
local communication and computation. We refer the reader to
Appendix to see the full details of DCOPs and how max-sum
is implemented in our context.

Note that, using max-sum in Algorithm 1, each agent only
has to communicate with its neighbors and the computation
of its local value is only conditioned on the histories and
policies of its neighbors. Given this, Algorithm 1 can oper-
ate in a decentralized manner with limited local information
and rapidly converge to an approximately optimal solution,

which is much more efficient and effective than full commu-
nication algorithms in [24]. In more detail, the agents need to
share all of their observations for using the algorithm in [24],
and in practice, these observations may contain a large amount
of the sensing data. The computation of agents’ policy can
only be started after receiving all of these observations, which
may result in severe delay when using low bandwidth net-
work and the algorithm in [24] then cannot be applied to
online patrolling problems. However, the agents only send
messages that contain limited local information using our
max-sum-based algorithm. Moreover, max-sum is an anytime
algorithm,!” which makes it more suitable for time critical
applications that require good enough solutions rapidly as
opposed to optimal ones that take a long time to compute.
Moreover, in this decentralized approach, there is no central
point of failure and no communication bottleneck for our algo-
rithm, and the patrolling solution scales well as the number of
agents increases (as we show later).

4) Convergence: Given the structure of TD-FMOP, its
convergence is determined by two aspects: 1) MTCS and
2) max-sum. First, the convergence of MCTS for online plan-
ning in partially observable situations has been established
in [12] that as long as the samples are drawn from the
true belief state. This result can be directly extended to our
model. Then, max-sum uses a factor-graph representation of
the DCOP and this can generate cycles which undermine its
convergence properties [30]. max-sum is known to be optimal
on acyclic factor graphs but provides no general guarantees
on optimality when cycles exist. However, extensive empiri-
cal evidence demonstrates that this family of algorithms for
DCOPs generates good approximate solutions [9], [30], [31].
To sum up, the convergence of TD-FMOP depends on the per-
formance of max-sum and we show our algorithm can achieve
good approximation in the section of experiments.

VII. VARIANTS OF TD-FMOP

Having formulated the decentralized model
TD-POMDP-HC and its algorithm TD-FMOP, in this
section, we propose some variations of this model and
this algorithm that we use as benchmarks to compare the
performance of our algorithms.

First, we propose TD-POMCP for solving a
TD-POMDP-HC by extending POMCP [12] with decen-
tralized coordination of action selections. The difference
between TD-POMCP and TD-FMOP is their two ways of
representing the belief state: 1) TD-POMCP uses a particle
filter [12] and 2) TD-FMOP uses the factored representation.
Similar to POMCP, TD-POMCP is a general algorithm for
TD-POMDPs and can be applied to problems that are too
large or too complex to represent its belief state.

Second, we can view the POMDP-HC as a centralized
version of TD-POMDP-HC by assuming full communica-
tion across all the agents. As an MPOMDP with complete
communication can be reduced to a POMDP with a sin-
gle centralized controller that takes joint actions and receives

17An anytime algorithm is an algorithm that can return a valid solution to
a problem even if it is interrupted at any time before it ends.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE I
MODELS AND ALGORITHMS

Model Algorithms
Centralised POMDP-HC FMOP, FMOP*, POMCP
Decentralised | TD-POMDP-HC TD-FMOP, TD-POMCP

joint observations [32], a POMDP-HC can be seen as an
instance of constrained POMDP. Then, POMCP can be used
to solve a POMDP-HC directly by considering its constraints.
Furthermore, we can simplify TD-FMOP by centrally select-
ing an joint action of all the agents and we name this algorithm
as FMOP.

Third, we propose FMOP*, an extension of FMOP which
balances health considerations in the longer term against infor-
mation gathering in the shorter term. FMOP defines the param-
eter T which determines the number of time steps MCTS looks
ahead, while the available horizon of the remaining health bud-
get is T — ¢, where ¢ is the current time. We define a heuristic
budget within t horizon by, (Ay) = by (b)) (t (1) /(T — 1)) for
each agent when using FMOP*.

Finally, we illustrate the relations of these models and
algorithms in Table 1.'® We empirically evaluate TD-FMOP,
TD-POMCP and FMOP and benchmark them with POMCP
in the next section.

VIII. EMPIRICAL EVALUATION

We consider a disaster response scenario in which an earth-
quake happened in a suburban area (see [6] for more details).
Given the process of situational awareness that was introduced
in Section III, the commanders designate a number of locations
for UAVs to patrol. The UAVs then continuously fly among
these locations to gather and update their specific information,
which is used to assist the commanders for an allocation of
the relief tasks (such as digging people out of rubble, mov-
ing water treatment units to populated areas, or extinguishing
fires). To test the performance of our patrolling algorithms, we
use the graphs shown in Fig. 3 that mimic typical patrolling
problems in the real-world. Given this, we compare the cen-
tralized algorithm FMOP with POMCP and the decentralized
algorithm TD-FMOP with TD-POMCP, respectively, where
POMCTP is the state-of-the-art online POMDP algorithm. For
the patrolling scenarios, we define several different three-
state information Markov models and two-state threat Markov
models for each vertex, and attribute these models, different
information and damage value functions to different vertices
in the graph of each scenario. We run 100 rounds for each
scenario and each algorithm, and evaluate the performance of
each algorithm by the average total reward and runtime. The
algorithms run on a machine with 2.6 GHz Intel dual core
CPU and 1 GB RAM.

A. Evaluation of Factored Belief and Heuristic Budget

To empirically evaluate the performance of the fac-
tored belief, we applied POMCP, FMOP and FMOP* to a

18Note that, although we propose algorithms by introducing how to solve
problems with health constraints, it is obvious that these algorithms can also
be used to solve problems without constraints.

IEEE TRANSACTIONS ON CYBERNETICS

1300
el
S 1100
g
5 900
(=2
©
g 700
0075, 100 1000 10000 100000

Number of Simulations

Fig. 6. Average rewards of the problem of two agents patrolling.

TABLE I
RUNTIME(S) IN SIMULATIONS WITH TWO AGENTS

50 100 1000 10000 100000
FMOP* | 0.11 0.14 1.18 9.22 74.98
FMOP 0.11 0.18 173 16.27 2235
POMCP | 0.05 0.09 346 20.56 217.7

POMDP-HC of two agents patrolling on a graph of square
grid with 12 vertices (3 x 4), while each agent patrols among
all the vertices. FMOP can be seen as combining POMCP
with the factored belief representation, while FMOP* extends
FMOP with the heuristic budget. The health budgets of the
two agents are 100 and 150, respectively. For this two-agent
patrolling problem, there are about 52 joint actions, 6> obser-
vations, and approximately 6!2 environment states. Agents
continuously patrol for 200 time steps in the stochastically
changing graph and look ahead ten time steps at each time.

The average total reward of different algorithms with dif-
ferent number of simulations are shown in Fig. 6 and their
runtimes are presented in Table II. We first compare FMOP
with POMCP. We can see that FMOP outperforms POMCP
for different numbers of simulations (by 21.19% with 50 sim-
ulations and by 19.03% with 100 simulations), showing that
there is some benefit to its exact belief representation. Both
FMOP and POMCP are MCTS-based algorithms and their
performance grows with the number of simulations. We then
compare FMOP* with FMOP and POMCP. Using its health
budget management heuristics in FOMP* for this 200 time
step horizon problem, the agents can cover more of the envi-
ronment. The results show that the performance of FMOP*
with 100 simulations supersedes the performance of FMOP
and POMCP regardless of the number of simulations.

B. Evaluation of Scalability

For TD-POMDP-HC, we empirically evaluate the effi-
ciency and scalability of TD-FMOP, TD-POMCP and FMOP
by benchmarking them with POMCP.!® We construct two
scenarios.

1) Scenario A: As shown in Fig. 3(a), there are six agents
patrolling on a graph with 12 vertices and 15 edges, in
which six specific patrolling areas are designated and
each agent has about two neighbors. For FMOP and
POMCP, the number of joint actions and observations of
the six agents are about 3¢ and 6°, while for TD-FMOP

19We assume that agents have full communication when solving
TD-POMDP-HC by FMOP or POMCP.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: DECENTRALIZED PATROLLING UNDER CONSTRAINTS IN DYNAMIC ENVIRONMENTS 11
240 TABLE IV
o RESULTS OF SIMULATIONS WITH 12 AGENTS
©
5 = e
T 160 1 = TD-POMCP 50 100 1000
= T = ThAvop value time(s) value time(s) value time(s)
§ 120}~ . TTTETBE TT T - o TD-FMOP 408.2 18.06 412.8 39.78 438.1 578.6
< FMOP - _ -
80 50 100 7000 10000 100000 TD-POMCP | 2549 331 2575 612 2632 7251
Number of Simulations POMCP - - -
Time limit violations (30 minutes) are indicated by ‘.
Fig. 7. Average rewards of the problem of six agents patrolling.
TABLE V
TABLE TII RESULTS OF SIMULATIONS WITH 24 AGENTS
RUNTIME(S) IN SIMULATIONS WITH S1X AGENTS
50 100 1000
lue time(s) value time(s) value time(s)
50 100 1000 10000 100000 va
TDEMOP 041 088 902 9326 105944 ;Il\)/[—(l;g/IOP 807.8 40.15 826.7 78.67 843.3 1371.7
FMOP 0.15 027 339 45.12 468.60 R . -
TD-POMCP | 013 039 687 03.38 1146.23 ggl—\i((j)g/[CP 522.5 7.94 524.3 16.08 519.8 172.9
POMCP 0.09 0.17 334 64.04 588.46 — — -

and TD-POMCEP, the number of local joint actions and
observations are about 6 x 33 and 6 x 6°.

2) Scenario B: As shown in Fig. 3(b), there are 12 agents
patrolling on a graph with 38 vertices and 59 edges,
in which 12 specific patrolling areas are designated
and each agent has about three neighbors. For FMOP
and POMCP, the number of joint actions and obser-
vations are about 3!2 and 62, while for TD-FMOP
and TD-POMCP, the number of local joint actions and
observations are about 12 x 3* and 12 x 6*.

3) Scenario C: There are 24 agents patrolling on a graph
with 76 vertices and 119 edges, in which 24 specific
patrolling areas are designated and each agent has about
three neighbors. For FMOP and POMCP, the number
of joint actions and observations are about 324 and 6%,
while for TD-FMOP and TD-POMCP, the number of
local joint actions and observations are about 24 x 3*
and 24 x 6%,

For all scenarios, agents patrol for a ten time step hori-
zon in each graph. For scenario A, we mainly compare
the performance of these four algorithms for solving this
six-agent patrolling problem, and plot the average reward of
different algorithms with different numbers of simulations in
Fig. 7, also present their runtimes in Table III. For a spe-
cific number of simulations, the performance of distributed
approaches TD-FMOP and TD-POMCP obviously exceeds
FMOP and POMCEP, respectively, while TD-FMOP performs
best. For small numbers of simulations, TD-FMOP outper-
forms TD-POMCP by 46.48% in 50 simulations and by
30.24% with 100 simulations, and achieves more than 90%
performance of all these algorithms in 100000 simulations.
TD-FMOP outperforms POMCP by more than 56.72% with
less or equal 100 simulations.

We evaluate the scalability of TD-FMOP using
scenarios B and C. For these scenarios, the average
reward and runtime of each algorithm with different numbers
of simulations are shown in Tables IV and V. For scenario
C with 24 agents, the average reward of randomly selecting
actions is 520.4. As FMOP and POMCP are centralized
algorithms, the number of joint actions and observations is
too large for them to get a result within 30 min. In contrast,

Time limit violations (30 minutes) are indicated by ‘.

the runtimes of TD-FMOP and TD-POMCP are reasonable
and much lower than those of FMOP and POMCP. This
is because of their distributed approximation calculation
(i.e., max-sum) for action selection. However, the particle
filter of TD-POMCP is not effective at approximating the
true belief state any more as the states change stochastically
and frequently in a state space which is too large. Given this,
the average reward generated by TD-POMCP is close to the
result of randomly selecting actions. TD-FMOP outperforms
TD-POMCP by more than 58.65% because of its exact belief
update.

Thus, we have empirically evaluated the effective of the
factored belief and the heuristic budget by comparing the algo-
rithms POMCP, FMOP, and FMOP*, and have shown that
our TD-FMOP is scalable to large problems (i.e., 24 agents
patrolling).

IX. CONCLUSION

In this paper, we proposed new models for decentral-
ized patrolling under uncertainty and health constraints in
partially observable nonstationary environments, the compu-
tational complexity of which is too high for state-of-the-art
algorithms to solve. We then designed the online planning
algorithms with distributed solutions that scale up to a large
number of agents. In particular, our algorithms combine the
health budget, the factored belief representation, MCTS and
max-sum for online planning. Then we empirically showed
that our algorithms are efficient in settings with small num-
bers of agents and can scale up to many agents in settings
with sparse interactions.

In real-world disaster response, it is important that UAVs
can continuously monitor the environment. As shown, in [5],
it is now possible to engineer interfaces that will allow emer-
gency responders, with little knowledge of the algorithmic
techniques we employ, to specify tasks and problem spaces for
the deployment of multiple heterogeneous UAVs in dynamic
and uncertain environments. Hence, we have developed our
model to cater for the requirements of the experts who manu-
facture and deploy UAVs in dangerous environments and who
may be able to use such interfaces underpinned by solutions

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

like ours. This paper is therefore one important foundational
step in helping to solve some of the key challenges they
face when sending expensive (human) assets to dangerous
environments.

Finally, note that our formulation is a very general model
for planning under uncertainty such that the solution can be
applied to other domains such as exploring physical structure
of crash site environment. Although we assume that the com-
plete graph of the sites in our model is known, we do not
make any assumptions about the states of the sites. However,
it may be possible to use the physical features (or obstacles)
in the environment as one of the state variables of each site to
model them more accurately and plan for paths around them.

APPENDIX

DISTRIBUTED CONSTRAINT OPTIMIZATION
AND MAX-SUM ALGORITHM

Here, we introduce the formulation of DCOPs and how
max-sum can solve DCOPs in a decentralized fashion.

A standard DCOP formalization of a multiagent coor-
dination problem is a tuple (M, X,D,V), where M =
{A1, ..., Az} is the set of agents and X' = {x1, ..., xpq} 1S
the set of variables, each variable x,, is controlled by exactly
one agent A,,. The agent A,, is responsible for assigning val-
ues to the variables it owns. D = {Dy, ..., Djrq)} is a set of
discrete and finite variable domains, and each variable x; can
take values in the domain D;. Then, V = {Vq, ..., V,} is a set
of functions that describe the constraints among the variables.
Each function V;:Dj; x --- X Djkj — R U {—o0} depends on
a set of variables xj € &X', where k; = |xj| is the arity of the
function and —oo is used to represent hard constraints. Each
function assigns a real value to each possible assignment of
the variables it depends on. The goal is then to find a variable
assignment that maximizes the sum of constraints

argmax » _ V;(x;). (7)

DCOPs are usually graphically represented using an interac-
tion graph, where variables are represented as circles and an
edge between two variables indicates that the two variables
participate in a constraint.

Algorithms for DCOPs have been successfully applied to
numerous multiagent problems [8]. As an approximation algo-
rithm, max-sum [9] has shown to be effective for large DCOPs
and we then introduce the details of max-sum.

max-sum is a specific instance of a general message pass-
ing algorithm that exploits the GDL in order to decompose a
complex calculation by factorizing it (i.e., representing it as
the sum or product of a number of simpler factors). To use
max-sum, a DCOP needs to be encoded as a special bipar-
tite graph, called a factor graph. A factor graph comprises
two types of nodes: 1) variable nodes (usually depicted as cir-
cles) and 2) function nodes (usually depicted as squares) [14].
Undirected links connect each function to its variables. A fac-
tor graph explicitly represents the relationships among the
variables and the functions nodes. Considering the situation
depicted in Fig. 8 and taking agent A, as an example, we

IEEE TRANSACTIONS ON CYBERNETICS

Fig. 8.
whose patrolling areas overlap, where black circles are vertices in the graph.
(b) Agent interaction graph. (c) Utility-based factor graph representations for
the problem.

(a) Each patrolling area of three agents in the environment

connect the function node representing V, with variable x»
(the action of agent Az) and with variables x| and x; (neigh-
bors’ actions). The overall function represented by this factor
graph is given by V = Vi (x1, x2) + Va(x1, x2, x3) + V3(x2, x3),
which is the social welfare function for the system. As we can
see that it can create loops in this factor graph. max-sum is
known to be optimal on acyclic factor graphs but provides no
general guarantees on optimality when cycles exist. However,
extensive empirical evidence demonstrates that this family of
algorithms generate good approximate solutions [9], [30], [31].

Notice that by using this formalization there is a clear allo-
cation of variables and function nodes to the agents. In other
words, each agent is responsible for deciding the allocation
of its own variable, for receiving messages for its function
and variable nodes and for updating the messages that flow
out of its function and variable nodes. In this way, the agents
can negotiate over the best possible actions continuously, thus
being able to quickly react to possible changes in the environ-
ment. Finally, we refer the reader to [9] for more details of
using max-sum.

REFERENCES

[1] I. Maza, F. Caballero, J. Capitdn, J. R. Martinez-de-Dios, and A. Ollero,
“Experimental results in multi-UAV coordination for disaster manage-
ment and civil security applications,” J. Intell. Robot. Syst., vol. 61,
nos. 1-4, pp. 563-585, 2011.

[2] F. M. Delle Fave, A. Rogers, Z. Xu, S. Sukkarieh, and N. R. Jennings,
“Deploying the max-sum algorithm for decentralised coordination and
task allocation of unmanned aerial vehicles for live aerial imagery
collection,” in Proc. ICRA, St. Paul, MN, USA, 2012, pp. 469-476.

[3] R. Stranders, E. M. de Cote, A. Rogers, and N. R. Jennings,
“Near-optimal continuous patrolling with teams of mobile information
gathering agents,” Artif. Intell., vol. 195, pp. 63-105, Feb. 2013.

[4] J. Capitan, L. Merino, and A. Ollero, “Decentralized cooperation of
multiple UAS for multi-target surveillance under uncertainties,” in
Proc. Int. Conf. Unmanned Aircraft Syst., Orlando, FL, USA, 2014,
pp. 1196-1202.

[5] S. D. Ramchurn et al., “A study of human-agent collaboration for
multi-UAV task allocation in dynamic environments,” in Proc. IJCAI,
Buenos Aires, Argentina, 2015, pp. 1184-1192.

[6] S. D. Ramchurn et al., “HAC-ER: A disaster response system based
on human-agent collectives,” in Proc. AAMAS, Istanbul, Turkey, 2015,
pp. 533-541.

[7] S. Chen, F. Wu, L. Shen, J. Chen, and S. D. Ramchurn, “Multi-agent
patrolling under uncertainty and threats,” PLoS ONE, vol. 10, no. 6,
2015, Art. ID e0130154.

[8] M. Yokoo, Distributed Constraint Satisfaction: Foundations of
Cooperation in Multi-Agent Systems. Berlin, Germany: Springer, 2012.

[9]1 A. Farinelli, A. Rogers, and N. R. Jennings, “Agent-based decen-

tralised coordination for sensor networks using the max-sum algorithm,”

Auton. Agents Multi-Agent Syst., vol. 28, no. 3, pp. 337-380, 2014.

D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The

complexity of decentralized control of Markov decision processes,”

Math. Oper. Res., vol. 27, no. 4, pp. 819-840, 2002.

[10]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: DECENTRALIZED PATROLLING UNDER CONSTRAINTS IN DYNAMIC ENVIRONMENTS 13

[11]

[12]

[13]

(14

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

F. Wu, N. R. Jennings, and X. Chen, “Sample-based policy iteration for
constrained DEC-POMDPs,” in Proc. ECAI, Montpellier, France, 2012,
pp. 858-863.

D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,”
in Proc. NIPS, Vancouver, BC, Canada, 2010, pp. 2164-2172.

R. Stranders, F. M. Delle Fave, A. Rogers, and N. R. Jennings, “A decen-
tralised coordination algorithm for mobile sensors,” in Proc. AAAI,
Atlanta, GA, USA, 2010, pp. 874-880.

A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings, “Decentralised
coordination of low-power embedded devices using the max-sum
algorithm,” in Proc. AAMAS, Estoril, Portugal, 2008, pp. 639-646.

J. L. Ny, M. Dahleh, and E. Feron, “Multi-UAV dynamic routing with
partial observations using restless bandit allocation indices,” in Proc.
Amer. Control Conf., Seattle, WA, USA, 2008, pp. 4220-4225.

G. Shani, R. I. Brafman, and S. E. Shimony, “Prioritizing point-based
POMDP solvers,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38,
no. 6, pp. 1592-1605, Dec. 2008.

X. Li, W. K. Cheung, and J. Liu, “Improving POMDP tractability via
belief compression and clustering,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 40, no. 1, pp. 125-136, Feb. 2010.

G. Shani, “Task-based decomposition of factored POMDPs,” [EEE
Trans. Cybern., vol. 44, no. 2, pp. 208-216, Feb. 2014.

C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov
decision processes,” Math. Oper. Res., vol. 12, no. 3, pp. 441450, 1987.
R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman, “Solving tran-
sition independent decentralized Markov decision processes,” J. Artif.
Intell. Res., vol. 22, no. 1, pp. 423455, 2004.

R. Nair, P. Varakantham, M. Tambe, and M. Yokoo, ‘“Networked dis-
tributed POMDPs: A synthesis of distributed constraint optimization and
POMDPs,” in Proc. AAAI, Pittsburgh, PA, USA, 2005, pp. 133-139.
S. J. Witwicki and E. H. Durfee, “Influence-based policy abstraction for
weakly-coupled DEC-POMDPs,” in Proc. ICAPS, 2010, Toronto, ON,
Canada, pp. 185-192.

C. B. Browne et al., “A survey of Monte Carlo tree search meth-
ods,” IEEE Trans. Comput. Intell. AI Games, vol. 4, no. 1, pp. 1-43,
Mar. 2012.

C. Amato and F. A. Oliehoek, ‘“Scalable planning and learning
for multiagent POMDPs,” in Proc. AAAI, Austin, TX, USA, 2015,
pp. 1995-2002.

T. Grant, “Unifying planning and control using an OODA-based archi-
tecture,” in Proc. Annu. Res. Conf. South Afr. Inst. Comput. Sci. Inf.
Technol. IT Res. Develop. Countries, Mpumalanga, South Africa, 2005,
pp. 159-170.

T. Grant and B. Kooter, “Comparing OODA & other models as oper-
ational view c2 architecture topic: C4isr/c2 architecture,” in Proc.
ICCRTS, Virginia Beach, VA, USA, 2005.

E. Simpson, S. Roberts, I. Psorakis, and A. Smith, “Dynamic Bayesian
combination of multiple imperfect classifiers,” in Decision Making and
Imperfection, Berlin, Germany: Springer, 2013, pp. 1-35.

C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA, USA: MIT Press, 2006.

S. C. W. Ong, S. W. Png, D. Hsu, and W. S. Lee, “Planning under
uncertainty for robotic tasks with mixed observability,” Int. J. Robot.
Res., vol. 29, no. 8, pp. 1053-1068, 2010.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” /EEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 498-519, Feb. 2001.

D. J. C. MacKay, Information Theory, Inference, and Learning
Algorithms, vol. 7. Cambridge, U.K.: Cambridge Univ. Press, 2003.

D. V. Pynadath and M. Tambe, “The communicative multiagent team
decision problem: Analyzing teamwork theories and models,” J. Artif.
Intell. Res., vol. 16, pp. 389-423, Jun. 2002.

Shaofei Chen received the B.S. degree in electrical
engineering from the Harbin Institute of Technology,
Harbin, China, in 2009, and the M.S. degree in
automation from the National University of Defense
Technology, Changsha, China, in 2011, where he is
currently pursuing the Ph.D. degree in automation.

He was a visiting Ph.D. student with the
Electronics and Computer Science Department,
University of Southampton, Southampton, U.K.,
supported by the China Scholarship Council from
2013 to 2015. His current research interests include

artificial intelligence, multiagent systems, and automated planning.

Feng Wu received the B.E. and Ph.D. degrees in
computer science from the University of Science and
Technology of China (USTC), Hefei, China, in 2006
and 2011, respectively.

He was a Research Fellow with the University
of Southampton, Southampton, U.K., from 2011
to 2014, researching on the ORCHID project. He
is currently an Associate Researcher of Computer
Science with the USTC. His current research inter-
ests include artificial intelligence, multiagent sys-
tems, automated planning, and robotics.

Lincheng Shen (M’10) received the B.E.,
M.S., and Ph.D. degrees in automatic con-
trol from the National University of Defense
Technology (NUDT), Changsha, China, in 1986,
1989, and 1994, respectively.

In 1989, he joined the Department of Automatic
Control, NUDT, where he is currently a Full
Professor and serves as the Dean of the College
of Mechatronics and Automation. He has published
over 100 technical papers in refereed international
journals and academic conferences proceedings.
His current research interests include mission planning, autonomous and
cooperative control, biomimetic robotics, and intelligent control.

Prof. Shen has initiated and organized several workshops and symposia,
including the International Workshop on Bionic Engineering 2012 and the
Chinese Automation Congress 2013. He has been serving as an Editorial
Board Member of the Journal of Bionic Engineering since 2007.

Jing Chen received the B.E. and Ph.D. degrees
in control science from the National University of
Defense Technology (NUDT), Changsha, China, in
1993 and 1999, respectively.

In 1999, he joined the College of Mechatronics
and Automation, NUDT, where he is currently a Full
Professor and serves as the Head of the Institute
of Automation. He has co-authored two books and
published over 50 papers in refereed international
journals and academic conferences proceedings. His
current research interests include mission planning,
artificial intelligence, robotics, and autonomic computing.

Sarvapali D. Ramchurn received the B.S. degree
in information systems engineering from Imperial
College London, London, U.K., in 2001, and
the Ph.D. degree in multiagent systems from the
University of Southampton, Southampton, U.K.,
in 2005.

He is currently an Associate Professor of
Electronics and Computer Science with the
University of Southampton, where he carries out
research into the design of autonomous agents and
multiagents for real-world socio-technical applica-
tions including energy systems, disaster management, and crowdsourcing. He
works closely with industry. His current research interests include number of
fields, such as machine learning, data science, and game theory. His papers
are referred with over 2000 Google Scholar citations and his work has
featured in various media, including BBC News, New Scientist, Engineering
and Physical Sciences Research Council Pioneer, and Wired.

Dr. Ramchurn was a recipient of multiple best paper awards for his work
at top Al conferences.

