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Abstract
We investigate a multi-agent patrolling problem where information is distributed alongside

threats in environments with uncertainties. Specifically, the information and threat at each

location are independently modelled asmulti-state Markov chains, whose states are not ob-

served until the location is visited by an agent. While agents will obtain information at a loca-

tion, they may also suffer damage from the threat at that location. Therefore, the goal of the

agents is to gather as much information as possible while mitigating the damage incurred.

To address this challenge, we formulate the single-agent patrolling problem as a Partially
Observable Markov Decision Process (POMDP) and propose a computationally efficient al-

gorithm to solve this model. Building upon this, to compute patrols for multiple agents, the

single-agent algorithm is extended for each agent with the aim of maximising its marginal

contribution to the team. We empirically evaluate our algorithm on problems of multi-agent

patrolling and show that it outperforms a baseline algorithm up to 44% for 10 agents and by

21% for 15 agents in large domains.

Introduction
Unmanned Aerial Vehicles (UAVs) are increasingly becoming essential tools to carry out situ-
ational awareness tasks in a number of real-world applications ranging from disaster response
[1–3] and security surveillance [3–5]. In these scenarios, multiple UAVs may be deployed to
gather information at specific locations as quickly as possible in order to support an ongoing
operation. However, such problems are often liable to a high degree of dynamism (e.g., fires
may spread, wind direction may change) and uncertainty (e.g., it may not be possible to
completely observe the causes of fires or the location of casualties may not be exactly known),
and may also contain a number of hazards or threats for the UAVs (e.g., UAVs may fly close to
buildings on fire or debris may fall on the UAVs).

In this paper, we consider the scenario where a set of UAVs aim to patrol the area to gather
as much information as possible while minimising the negative impact of threats. Crucially,
they aim to do so within an environment that is partially observable (i.e., the features of the
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locations are only fully observable where the UAV is located and partially observable at other
locations). Hence, when planning the sequence of locations to visit, UAVs have the difficult
task of estimating the information to be gained and threats to be encountered at these locations.
This problem is compounded by the fact that the dynamism inherent to the environment may
cause the information and threats at each location to change over time (i.e., the environment is
stochastic). For example, when UAVs visit a building in a disaster area, the building states (in-
tact, about to collapse, collapsing, or collapsed) may correspond to threat states (levels) for
UAVs, and the threat at each location may be changing stochastically, such that it switches be-
tween “about to collapse” to “collapsed” due to an aftershock [6]. The information in the envi-
ronment may also change dynamically (e.g., a victim may get out of danger or the fire may get
close to a victim).

To date, a number of approaches to information gathering with teams of UAVs have been
proposed. However, most of the work [3, 7, 8] focus on developing algorithms for UAVs gath-
ering information in dynamic environments where the model of the features of the environ-
ment is fully observable and stationary (see Related Work section for more details).
Furthermore, none of these approaches have considered how threats may affect the informa-
tion gathering process while the environment is partially observable and non-stationary. Un-
less such issues are tackled, we believe it is unlikely that large UAV deployments in real major
disaster will be feasible.

In recent years, agent-based modelling has been effectively used to formulate and solve the
problems of planning in environments characterized by uncertainties [9]. In agent-based mod-
els, an agent is an encapsulated computer system that is situated in some environment and that
is capable of flexible, autonomous action in that environment in order to meet its design objec-
tives [10]. Such agents are either software or hardware (e.g., robots or unmanned autonomous
systems (UAS)). In particular, operating in uncertain environments, autonomous agents have
to deal with executing actions that may not have the intended results, with environments that
change while the agent is operating, and with making observations that might not be complete-
ly accurate.

Against this background, we propose a agent-based model for patrolling under uncertainty
and threats and go on to develop a novel algorithm to solve the planning problem that it poses.
In more detail, we first model the information and threats on a graph representing the environ-
ment, where the information and threat at each location are independently modelled asmulti-
state Markov chains (which captures the non-stationary feature), whose states are not observed
until the location is visited by an agent (which captures the partially observable feature). Then,
we cast the single-agent patrolling problem as a Partially Observable Markov Decision Process
(POMDP), which provides a rich model for planning and acting in partially observable sto-
chastic domains [11]. Unfortunately, existing POMDP solvers are very inefficient to solve our
POMDP formulation due to the exponential growth of the number of possible paths of agents
in the size of the graph and the number of the possible observations along each possible path
(see Related Work section for more detail). Hence, we propose an online algorithm to solve the
patrolling problem for one agent at a time. (In computer science, an online algorithm is one
that can process its input piece-by-piece in a serial fashion, i.e., in the order that the input is fed
to the algorithm, without having the entire input available from the start. In contrast, an offline
algorithm is given the whole problem data from the beginning and is required to output an an-
swer which solves the problem at hand.) In particular, the algorithm utilises a predictive heuris-
tic that only refers to the possible paths (looking ahead several steps) from the current position
of the agent. Building upon this, to compute patrolling policies for multiple agents, the single-
agent algorithm is extended for each agent with the aim of maximising its marginal contribu-
tion to the team. In summary, this paper advances the state of the art in the following ways:
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• We propose the first algorithm for multi-agent patrolling under uncertainty and threats. Our
formulation does not only capture the partially observable and non-stationary features of the
dynamic environment, but also accounts for the health status of the patrolling agents.

• We design a predictive heuristic to estimate the value of each possible path from current po-
sition of the agent and provide an online algorithm to solve the patrolling problem for one
agent at a time. Moreover, we propose a multi-agent algorithm that sequentially computes
policies for individual agents. In particular, we also show that our multi-agent algorithm
scale to larger environments (i.e., more than 10 agents) than existing solutions.

• We evaluate our algorithms in simulations and show that our algorithm outperforms a base-
line algorithm up to 44% for 10 agents and by 21% for 15 agents.

The remainder of this paper is structured as follows. First, we review the literature on patrol-
ling problems. We then present our model for the problem of multi-agent patrolling under un-
certainty and threats. Given this, we formulate the single-agent patrolling problem as a
POMDP and provide an algorithm that computes policies for individual agents. Finally, we
propose our multi-agent algorithm and evaluate it in the simulations of multi-agent patrolling
in a large environment.

RelatedWork
In this section, we review related work on agent based model and approaches for multi-agent
patrolling problems.

In general, methods to gather situational awareness without considering threats are typically
categorised as a class of information gathering problem[3], in which agents aim to continuously
collect and provide up-to-date situational awareness. For these dynamic environments, previ-
ous work [3, 7, 8] consider fully observable (agents can directly observe the underlying state of
the environment) stationary models (joint probability distribution of its states do not change
when shifted in time). A partially observable model has been proposed in [12], where an agent
can only perceive the exact state at its current position. Game-theoretic approaches [13–18]
have focused on patrolling to guard important targets in the presence of strategic evaders or in-
truders; a problem that is characterised by (possibly multiple) attackers attempting to avoid
capture or breach a perimeter. The agents’main challenge in such cases is to detect and capture
these attackers in an effort to minimise loss. However, these approaches do not consider the
health status of the agents and the damage that agents can suffer while patrolling.

Stationary models of the information/threats are considered in previous work. The work on
information gathering in dynamic environments [8] have focused on specific environmental
phenomena (e.g., monitoring algal bloom growth in lakes and salt concentration in rivers)
rather than stochastic events as in our scenarios. Markov models are widely used to model
non-stationary stochastic states in the world, such as the specific ground targets for aircraft
[12, 19, 20] and sensors [21], physical activities in wireless network [22], and channel memory
in communication systems [23, 24]. However, a number of strict assumptions are made in
these works in terms of the Markov models used. For example, each target at each period can
be in one of only two states [12, 23] and the matrix of the Markov models must satisfy some
special formations [24].

Among these works, aMarkov Decision Process (MDP) based algorithm that computes poli-
cies for individual agents has been proposed in [3] to solve continuous information gathering
in fully observable environments. Our formulation in this paper mainly extends [3] to patrol-
ling under threats in partially observable and on-stationary environments and cast the single-
agent patrolling problem as a POMDP. However, solving this formulation using current
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POMDP solvers [25] for all but the smallest instances is impossible due to the exponential
growth in the number of possible paths of agents that can be traced in the environment and the
number of the possible observations along each path. The POMCP algorithm has been pro-
posed in [26] and has been shown to generate good solution quality and scale to large
POMDPs. However, to the best of our knowledge, developing scalable approaches that extend
POMCP to solve multi-agent POMDPs is still a open problem. As these possible benchmarks
are unable to scale to multi-agent instances of our formulation, we design a baseline algorithm
that greedily select the policy for one time step as a benchmark.

Methods
In this section, we present the model for the problem of multi-agent patrolling under uncer-
tainty and threats. Specifically, we first model the physical environment in which the agents op-
erate and then go on to describe the decision problem faced by the agents.

The Patrolling Problem
We formulate the patrolling problem by defining the physical environment and patrolling
agents. In particular, we present the Markov models of information and threat at in the envi-
ronment to capture the non-stationary feature.

The physical environment. The physical environment is defined by its spatial, temporal
and dynamic properties. In particular, in the aftermath of a disaster, a number of specific sites
might need urgent attention and access to these sites may be limited to certain areas (e.g., due
to trees, debris, or natural obstacles). Hence, we can capture such features in terms of paths
along which agents can travel from one disaster site to another. Specifically, the spatial property
of the environment is encoded by a graph, which specifies how and where agents can move.

Definition 1 (Graph)We model an area of the environment as an undirected graph G = (V,
E), where each vertex V representing spatial coordinates are embedded in Euclidean space and
edges E encode the movements that are possible between them. Here, we denote N = jVj.

In disaster response, each disaster site is a vertex in the graph, and a traversable area be-
tween a pair of sites is an edge of the graph.

Definition 2 (Time) Time is modelled by a set of time steps {1,2,. . .,T} and at each time step t
2 {1,2,. . .,T} the agents visit some sites in the environment.

To capture the dynamic attributes of the environment, we assume that each vertex holds
two states: one for information and one for threats.

Definition 3 (Information State Variable) An information state variable indicates different
levels of the information at a given vertex.

For example, how many people need help and what is the status of a bridge are information
state variables in disaster response scenario.

Definition 4 (Threat State Variable) A threat state variable reflects the level of damage an
agent suffers when visiting a given vertex.

For example, the level of fire and the degree of smog are typical threat state variables in di-
saster response.

Definition 5 (Markov Model of Information and Threat) The two state variables at each
vertex change over time according to discrete-time multi-state Markov chains.

To capture the transitions of the state variables, we employ a Markov chain model. Specifi-
cally, for a Markov chain with K states S = (S1, S2, . . ., SK), the matrix of transition probabilities
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for pairs of states is defined as:

P ¼

p11 � � � p1K

p21 � � � p2K

..

. . .
. ..

.

pK1 � � � pKK

2
666666664

3
777777775
¼

P1

P2

..

.

PK

2
666666664

3
777777775

where pij is the probability that threat state Si transitions to Sj in one time step and Si, Sj 2 S. An
example of information and threat models at a vertex is shown in Fig 1. Thus, Fig 1(a) shows a
threat model with 2 states (i.e., R1 and R2) and Fig 1(b) shows an information model with 3
states (i.e., I1, I2 and I3), where the probabilities of each information/threat state changes over a
time step are given (e.g., the probability of R1 changes to R2 is 0.1).

The set of information states In ¼ fIn1 ; In2 ; . . . ; InKn
I
g for location vn correspond to an amount

Kn
I of information which agents obtain when visiting vn. The value of information is deter-

mined by the function fn:In! R
+, and f ðInk Þ increases monotonically with k 2 f1; . . . ;Kn

I g,
which indicates that the states of information are ordered in terms of their value. The informa-
tion state at a given vertex independently evolves as a Kn

I -state Markov chain model with a ma-
trix of transition probabilities Pn

I .
Similarly, the set of threat states Rn ¼ fRn

1;R
n
2; . . . ;R

n
Kn
R
g indicate the Kn

R threat levels of ver-

tex vn 2 V. The “damage” that an agent suffers when visiting vertex vn is captured by the func-
tion cn:Rn! R

+, and cðRn
kÞ increases monotonically with k 2 f1; . . . ;Kn

Rg. The threat state at a
given vertex independently evolves over time as a Kn

R-state Markov chain and the matrix of
transition probabilities is Pn

R.
Having modelled the environment in which the agents operate, we next elaborate on the

agents’ goals.
Patrolling Agents. We define a patrolling agent (agent for short) as a physical mobile enti-

ty situated in the environment defined above, capable of gathering information, and maybe
damaged by the threat when visiting a vertex. The set of all agents is denoted as A = {1,. . .,jAj}.
Then, the movement and visit capabilities of agents are formulated as follows. When patrolling
in a graph G, each agent is positioned at a given vertex in G at each time step t. The movement
of each agent is atomic, i.e., takes place within the interval between two subsequent time steps,
and is constrained by G, i.e., agentm positioned at a vertex vi 2 V can only move to a vertex
v0i 2 adjGðviÞ that is adjacent to vi in G. We assume that 8vi 2 V, vi 2 adjG(vi), i.e., an agent can

Fig 1. Example of information and threat models at a vertex. (a) A threat model with 2 states (i.e., R1 and R2) and (b) an information model with 3 states
(i.e., I1, I2 and I3), where the probabilities of each information/threat state changes to another over a time step are given (e.g., the probability of R1 changes to
R2 is 0.1).

doi:10.1371/journal.pone.0130154.g001
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also stay at the same vertex. The speed of the agents is sufficient to reach an adjacent vertex
within a single time step. Time can be discretised according to the speed of the UAVs. Thus if
the UAVs can travel between sites in a five minutes, then a time step may be set at 5 minutes in
the model.

Given this, an agent visits a vertex vn when it is positioned at that vertex. On the one hand, a
visit results in the agent being aware of the current information and threat state at vn, such as Ini
and Rn

j respectively. On the other hand, this agent obtains a reward f nðIni Þ and suffers a loss
cnðRn

j Þ for a visit. The time it takes to visit a vertex is assumed to be negligible. We let Fn ¼
½f nðIn1 Þ; . . . ; f nðInKn

I
Þ� denote the information value vector, where fn(Ik) is the information value

that an agent could get if the information state is Ink (e.g., information at a vertex has 3 states
and corresponds to 3 information values [0, 2, 5]). Similarly, we let Cn ¼ ½cnðRn

1Þ; . . . ; cnðRn
Kn
R
Þ�

denote as the damage value vector at vertex vn, where cnðRn
kÞ is the damage value that an agent

will lose if the threat state is Rn
k (e.g., fire level at a position has 4 states which corresponds to 4

levels of damage [0, 4, 6, 10], and smog degree at a position has 3 states which corresponds to 4
levels of damage [0, 2, 5]). For each visit, the information at that vertex is obtained by the agent
and we regard that the information state at a given vertex vn will reset to In1 when an agent visits
this vertex (In1 is the information state which means no new information was generated at vn
after last visit). As the states at each vertex change over time and agents can only access the
exact states at the vertices that they visit, the patrolling environment can be considered non-
stationary (i.e., joint probability distribution of its states may change when shifted in time) and
partially observable.

Furthermore, in this paper, we make two assumptions about the communication and coop-
eration among agents as follows.

Assumption 1 All the agents can share their collected observations with each other via com-
munication. Such peer to peer communication is free of noise, costs, and delays.

Consider a centralised station is organized to coordinate a team of UAVs for monitoring
the continuously changing state of a disaster area, where each UAV can full communication
with this station and Assumption 1 is satisfied in these domains. However, in some real scenar-
ios, UAVs can only coordinate with each other using limited communication and decentralised
approaches may be more appropriate (but this is beyond the scope of this paper and will be
considered in future work).

Assumption 2When more than one agent is visiting a vertex, only one information value is
obtained for the team but each agent suffers the same damage that may be generated at that
vertex.

This assumption is satisfied in the scenarios where the information gathering capability of
one agent at a vertex is equal to that provided by multiple agents with the same sensors, and
agents independently suffer the damage caused by threats. In future work, a model of informa-
tion fusion for multiple (heterogeneous) agents will be considered. Thus, the team of agents
need to coordinate with each other based on their observations while patrolling. Specifically,
the goal of the agents is to gather as much information as possible while minimise the damage
incurred.

We now provide a simple example to explain how the agents would operate in this scenario.
Consider an agent that enters into a building on fire. In our setting, this is equivalent to the
agent visiting a node in the graph. The fire level (threat state variable) and valuable information
about victims and assets (information variable) changes over time. While exploring the build-
ing, the agent may acquire some information and suffer some damage due to the fire. At each
time step, an agent selects one adjacent building to visit based on the estimated information
value and the prior observation of threat states at each location. It then obtains a reward based
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on the value of the information, and suffers a loss which is associated with the threat state.
Then, the information state at the visited vertex is immediately reset.

Having defined the patrolling problem, we now need to plan the sequential patrolling ac-
tions for agents based on the history of actions and observations, and the model of the environ-
ment. Hence, in what follows, we first propose a POMDP formulation for single-agent
patrolling within a graph and design an algorithm to solve it. Building upon this, we propose a
scalable multi-agent patrolling algorithm.

Single-Agent Patrolling
In this section, we first formulate the POMDP based framework for single-agent patrolling
problem. POMDPs imply that the agent does not know the exact state it is in, and the agent re-
quires to keep track of each observation received, in order to maintain a probability distribu-
tion, known as the belief state, over the possible states [11]. Thus, we analysis that a standard
representation of belief state makes the POMDP computational intractable and then present a
compact representation of belief state for our POMDP formulation. Given this, we propose a
predictive heuristic and an online single-agent algorithm.

The POMDP Framework. We now set up the single-agent patrolling problem as a
POMDP hS,A,O, T,O, ri as follows:
• S is the set of states. A state is defined as a tuple s ¼ ½v; ðs1R; . . . ; sNR Þ; ðs1I ; . . . ; sNI Þ�2S, where
v is the current position of the agent, sNR 2Rn and sNI 2 In are the threat and information states

at vertex vn 2 V. We denote se¼½ðs1R; . . . ; sNR Þ; ðs1I ; . . . ; sNI Þ�2Se, as the state that captures the
information and threat states at all of the positions. Given this, the number of the states in S
increases exponentially with the number the vertices.

• A is the set of all actions. The agent select an adjacent vertex to visit as an action.

• O is the set of observations. We define an observation o ¼ ðvi; siI ; siRÞ 2 O as the current po-
sition vi and the information and threat state at this position.

• T is the set of conditional transition probabilities. We assume that v is deterministic and only
determined by the destination of movement of the agent. Based on the Markov models de-

fined in the patrolling problem, se follows a discrete-time Markov process with
QN

n¼1 K
n
RK

n
I

states.

• O is the set of observation probabilities. As an observation o is directly a part of some states,
the observation probability O(ojs0, a) = 1 if o is consistent with the corresponding part of s0

and O(ojs0, a) = 0 otherwise.

• r:A ×O! R is a reward function. r(a, o) is the sum of the rewards obtained by the agent
which associates to the action a and observation o:

rða; oÞ ¼ af iðsiIÞ � ð1� aÞciðsiRÞ ð1Þ

where α is a weight parameter of the two objectives.

The objective of the agent is then to choose the movement actions sequentially to maximize the
total expected reward accumulated over T steps.

In this model, the states are not directly observable. Hence, a standard belief vector B(t) =
[b1(t), . . ., bM(t)] is defined as the posterior probability distribution over the possible states S,
where bm(t) is the conditional probability that the environment state is at themth state at the
current time step t. For any t, it has been shown in [27] that this belief vector is a sufficient
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statistic for the design of the optimal action for each time step. A policy π specifies the action
that will be executed in any given belief state and the optimal policy π� is a policy by which the
agent gets the maximum total expected reward accumulated over T steps. However, as each en-
vironment state is an joint state of the information and threat states at all of the vertices, the

number of possible states S that defined in our POMDP is
QN

n¼1 K
n
RK

n
I , which increases expo-

nentially with the number the vertices. Moreover, as the belief vector is defined as the posterior
probability distribution over these possible states, the dimension of this belief vector also in-
creases exponentially with the number the vertices.

To address this, we propose an online method by introducing a belief vector of reduced di-
mension and develop a predictive heuristic to reduce the search space and still produce high
quality solutions (as we show later).

Compact Belief Representation. As the threat state and information state variables at
each vertex evolve independently and v is deterministic, we can find a sufficient statistic for the
optimal policy whose dimension linearly grows with N, similar to [23, 24]. We introduce a
compact representation of belief state and its transition function in this section.

We define a sufficient statistic belief vector of the environment states at time t as the vector
of the conditional probabilities (conditioned on the observation and decision history)C(t) =
[CR(t),CI(t)], whereCR(t) is defined as:

CRðtÞ ¼ ðw1
RðtÞ; . . . ;wN

R ðtÞÞ

wn
RðtÞ ¼ ðwn

R1ðtÞ; . . . ;wn
RKn

R
ðtÞÞ

ð2Þ
8<
:

where wn
Rk1
ðtÞ is the probability that the threat state at vertex vn is Rn

k1
, k1 ¼ 1; . . . ;Kn

R and

CI(t) is defined as:

CIðtÞ ¼ ðw1
I ðtÞ; . . . ;wN

I ðtÞÞ

wn
I ðtÞ ¼ ðwn

I1ðtÞ; . . . ;wn
IKn

I
ðtÞÞ

ð3Þ
8<
:

where wn
Ik2
ðtÞ is the probability that the information state at vertex vn is Ink2 and k2 ¼ 1; . . . ;Kn

I .

ThenC(t) is a sufficient statistic of optimal decision making [23, 24]. By exploiting the statisti-
cal independence among vertices, we reduce the dimension of the sufficient statistic fromQN

n¼1 K
n
RK

n
I to S

N
n¼1ðKn

R þ Kn
I Þ, which grows with N linearly. This allows us to reduce the

computational and storage complexity of the optimal patrolling policy from exponential to
linear.

Theorem 1 For any time t,C(t) is a sufficient statistic for the design of optimal policy for our
POMDP formulation.

ProofWe show that when the information and threat at the N vertices evolve independent-
ly, each element bm(t) in the standard belief vector B(t) can be obtained fromC(t), where bm(t)
is the conditional probability that the environment state is at the ith state. Without loss of gen-
erality, we consider N = 2. Let I(t) denote the history up to the beginning of slot t. Let τn denote
the most recent time instant when vertex vn is visited. We can thus write an entry of bm(t) as in
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Eq (4). Quantities in Eq (4) are entries ofC(t). Hence,C(t) is a sufficient statistics.

Pr ½s1RðtÞ¼ i0; s1RðtÞ¼ i00; s1I ðtÞ¼ j0; s2I ðtÞ¼ j00 j IðtÞ�

¼ Pr ½s1RðtÞ¼ i0; s2RðtÞ¼ i00; s1I ðtÞ¼ j0; s2I ðtÞ¼ j00 j s1Rðt1Þ¼o
0
R; s

2
Rðt2Þ¼o

00
R; t1; t2�

¼ Pr ½s1RðtÞ¼ i0 j s1Rðt1Þ¼o
0
R�Pr ½s2RðtÞ¼ i00 j s2Rðt2Þ¼o

00
R�

Pr ½s1I ðtÞ¼ j0 j t1�Pr ½s2I ðtÞ¼ j00 j t2�

ð4Þ

Initially, we assume that we have probabilistic information about the state of each of the N
verticesC(0) = [CR(0),CI(0)]. Then, the elements of belief vectorC(t) are updated toC(t+1)
upon action a = vi and observation o ¼ ðvi; siI; siRÞ as:

wn
Rðt þ 1Þ ¼

(
~I k if vn ¼ vi; s

i
RðtÞ ¼ Rk

wn
RðtÞPn

R if vn 6¼ vi

wn
I ðt þ 1Þ ¼

(
~I 1 if vn ¼ vi

wn
I ðtÞPn

I if vn 6¼ vi

ð5Þ

where 8vn 2 V, Rn
k 2 Rn, Ink 2 In, and ~I k is a unit vector with the kth item is 1, Pn

R and P
n
I are re-

spectively the matrices of transition probabilities of threat and information at position vn. As
shown in Eq (5), the threat belief vector wn

Rðt þ 1Þ at one vertex vn that some agent is visiting is

updated to ~I k based on the observation Rn
kðhÞ at this vertex, whilewn

Rðt þ 1Þ at some other ver-
tex that no agent is visiting is updated by the current threat belief vectorswn

RðtÞ and threat
Markov model Pn

R at this vertex. A similar explanation holds for the update to the information
belief wn

I ðt þ 1Þ , as for vn 2 V.
Based on the transition function above, a policy π specifies a sequence of actions π = [π(1),

π(2),. . .], where π(t) is the position selected to visit at time t. Given this, the optimal policy can
be computed as:

p� ¼ arg max
p

E
p
X1
t¼1

gtRpðtÞðCðtÞjCð0ÞÞ
" #

ð6Þ

whereRπ(t)(C(t)) is the reward obtained when the belief state isC(t) and γ 2 [0, 1] is the dis-
count factor.

Although the dimensionality of the belief state is reduced, the problem is still a POMDP and
finding the optimal solution is intractable. Based on this reduced belief vector, we next develop
a predictive heuristic and present the online single-agent algorithm that implements this
heuristic.

The Predictive Heuristic. In order to develop a predictive heuristic for online policy selec-
tion, we first introduce the assumption that the Markov state transition matrices are monotone
matrices, which means that the higher the information/damage value of the vertex’s current
state the higher is the likelihood that the next state of this vertex will be of high information/
damage value. Then, we show how to define the predictive heuristic as the predictive expected
future reward based on the monotonicity of the transition matrices.

Stochastic dominance is a central theme in a wide variety of applications in economics, fi-
nance and statistics [28]. Similar assumption has been made to model the states of the channels
in communication systems [23, 24] and the states at targets for UAVs monitoring [12].
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Stochastic dominance� between two Z dimension probability vector x, y is defined as x� y, if:

XZ
j¼i

xðjÞ �
XZ
j¼i

yðjÞ; for i ¼ 2; 3; . . . ;Z ð7Þ

We assume that the Markov information model and Markov threat model are monotonic
matrices, i.e., the matrix of transition probabilities Pn

R and P
n
I satisfies:

Pn
RK1

� Pn
RK1�1 � . . . � Pn

R1

Pn
IK2

� Pn
IK2�1 � . . . � Pn

I1

ð8Þ

If the matrix of transition probabilities Pn
R and P

n
I satisfy the assumption above, then Pn

R and
Pn
I aremonotone matrices[29]. Under this assumption, the higher the information value of the

state of the current vertex the higher is the likelihood that the next state of this vertex will be of

high information value, i.e., if wn
I ðtÞ � wn0

I ðtÞ, then wn
I ðtÞPn

I � wn0
I ðtÞPn0

I . From (5), we know
that probability vectors for information states of two vertices keep the relationship of stochastic

dominance when no agent visits any of them. Obviously, if wn
I ðtÞ � wn0

I ðtÞ, then
wn

I ðtÞFn � wn0
I ðtÞFn0 , which means that a stochastically dominant information belief vector is

likely to have a higher information value. The same is true that a stochastically dominant threat
belief vector is likely to have a higher damage value. In particular, as the information state at a
given vertex will reset to I1 when there is an agent visiting this vertex, the belief vector of infor-
mation states (1,0,. . .,0) is stochastically dominated by the belief vector of any vertex which is
not being visited, so the more recently visited vertex always has a lower expected information
value.

To note, our monotonicity assumption is not a constraint that makes the information value
(or the damage of the threat) increasing with time, but a model that the probability vector of
the information (or threat) transition matrices satisfy the feature of stochastic dominance. We
now provide a example of a 4-state Markov threat model at a vertex as follows:

PR ¼

0:8 0:1 0:1 0

0:4 0:5 0:0 0:1

0:2 0:1 0:6 0:1

0 0:0 0:4 0:6

2
66666664

3
77777775

It can be seen that the Vectors of PR satisfy the condition of Eq (8), i.e., PR4� PR3� PR2� PR1,
where for PR3� PR2 as an example, the elements of PR2 and PR3 match the condition for sto-
chastic dominance of Eq (7) as:

0:1þ 0:6þ 0:1≧0:5þ 0:0þ 0:1

0:6þ 0:1≧0:0þ 0:1

0:1≧0:1

For example, if the threat states at vertices v1 and v2 are respectively w1
R ¼ ½0:1; 0:2; 0:5; 0:2�

and w2
R ¼ ½0:2; 0:4; 0:3; 0:1�, i.e., w1

R � w2
R. Then, v1 is likely to have a higher next threat state

than v2. However, after a time step, it is possible that any threat state may switch to not only a
higher state, but also a lower state.
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Then given the monotonicity assumption, we can use the relationship between the belief
states at different vertices in order to “predict” the belief state at an unvisited node. Hence, we
can estimate the expected reward agents may get from one vertex of the graph when visiting it
at a near future step. We denote a feasible policy of length D at time t as πD(t) = (πt+1,. . ., πt+D),
which consists of D consecutive deterministic vertices/actions.

Here, we define the predictive heuristic as the predictive expected future reward

E½R̂ðpDðtÞÞ� for policy πD(t), which is the aggregate of the expected reward of each step in
πD(t) as:

E½R̂ðpDðtÞÞ� ¼
XD
i¼1

gtðaŵptþi
I ðt þ iÞFptþi � ð1� aÞŵptþi

R ðt þ iÞLptþiÞ ð9Þ

where, ½ŵptþi
I ðt þ iÞ; ŵptþi

R ðt þ iÞ� is the predictive belief vector at the vertex πt+i and time t+i.
For the step t+1, we can get the predictive belief vector ½ŵptþ1

I ðt þ 1Þ; ŵptþ1
R ðt þ 1Þ� by the cur-

rent belief vectorC(t), current action a(t) and observations θ(t), i.e.

Cðt þ 1Þ ¼ d CðtÞ j a�t ; yðtÞ
� �

, which is the belief vector at t+1 and obtained from Eq (5). For

{t+2,. . ., t+D}, we get the predicted belief vector based on a transition which omits observations
in Eq (5) as follows:

ŵn
Rðtþ 1Þ ¼ ŵn

RðtÞPn
R

ŵn
I ðtþ 1Þ ¼

Pn
I1 if vn ¼ pt

ŵn
I ðtÞPn

I if vn 6¼ pt

ð10Þ
8<
:

where τ = {t+1,. . ., t+D−1}.
Given the predictive heuristic and policies that looks ahead D time periods, the agent com-

pares all feasible paths of length D and chooses the next location to visit according to the path
that gives the highest predictive expected reward gained over that path. The details of how to
use the heuristic in our online single-agent algorithm is presented in the next section.

The Online Algorithm. Based on the predictive heuristic, we propose an online algorithm
for single-agent patrolling problem (Algorithm 1) in this section.

Algorithm 1 Single-Agent Patrolling

Require: fPn
Rg: the Markov threat models

Require: fPn
I g: the Markov information models

Require: Ψ(t): the belief state of current time step
Require: o(t): the observation at the current position
Require: v(t): current position.
Ensure: a�(t+1): next action of the agent4

Step 0: get all feasible policies ΠD(t);4

Step 1: computing best policy:
1: for πD(t) 2 ΠD(t) do4

Step 1.1: Get predictive belief state for next D steps:
2: Ψ(t+1) δ(Ψ(t)jvt, θ(t))
3: for τ 2 {t+1,. . ., t+D−1} do
4: for vn 2 V do

5: ŵnðtþ 1Þ  d̂ ŵnðtÞ j ptðtÞð Þ
6: end for
7: end for4

Step 1.2: Compute the predictive reward for πD(t):

8: E½R̂ðpDðtÞÞ� ¼ awptþi
I ðt þ iÞFptþi þ bwptþi

R ðt þ iÞLptþi
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4

Step 1.3: Compare πD(t) with the stored best policy:

9: if E½R̂ðpDðtÞÞ� > E½R̂ðp�DðtÞÞ� then
10: p�DðtÞ  pDðtÞ
11: end if
12: end for4

Step 2:return the next action from the best policy p�i
13: return a�ðt þ 1Þ  p�tþ1

First, we computePD(t), which is the set of all the feasible policies that start from current
position v(t) (step 0), where we name the parameter D as themaximum horizon, i.e. the num-
ber of horizons we look ahead in the POMDP. Then, we compute the predictive expected re-
ward for all the policies. For each policy, the belief state at t+1 is updated by the belief state,
position and observations at t by Eq (5) (line 2) and the predictive belief state at {t+2,. . ., t+D}
is computed by Eq (10) (line 3–7). Given this, we compute the predictive reward for the policy
(line 8). Thus, the best policy is:

p�DðtÞ ¼ arg max
pDðtÞ

E½R̂ðpDðtÞÞ� ð11Þ

The best next action here is computed as a�ðt þ 1Þ ¼ p�tþ1, which is the first action of best poli-
cy (line 13).

Having defined the online single-agent algorithm for our formulation of patrolling under
uncertainty and threats, we extend it to compute policies for multi-agent problems next.

Multi-Agent Patrolling
For multi-agent patrolling, we assume all the agents can share their collected observations with
each other with full communication. Thus, team of agents may not only obtain more informa-
tion about the environment, but each agent may also make decisions given observations are
shared by other agents. Given this, we formulate the multi-agent patrolling problem as aMulti-
agent POMDP (MPOMDP) and design an scalable online multi-agent algorithm to coordinate
the actions of agents in their patrolling tasks.

A MPOMDP with complete communication can be reduced to a POMDP with a single cen-
tralised controller that takes joint actions and receives joint observations [30]. We now set up
our problem of multi-agent patrolling in a graph as a POMDP hM,S,A,O, T,O, ri as follows.
• M is the set of the agents.

• S is the set of states. A state is defined as a tuple~s ¼ ½~v; ðs1R; . . . ; sNR Þ; ðs1I ; . . . ; sNI Þ�2S, where
~v is the current positions of agents, sNR 2Rn and sNI 2 In are the threat and information states

at vertex vn 2 V. We denote ~se¼½ðs1R; . . . ; sNR Þ; ðs1I ; . . . ; sNI Þ�2Se, as the state that captures the
information and threat states at each position.

• A is the set of all joint actions. The agents select adjacent vertices to visit as an joint action.

• O is the set of joint observations. For current positions of the agents and the information and
threat states of their current positions, we define a joint observation
o ¼ f~v; foij8vi 2~vgg 2 O, where oi ¼ ðsiR; siIÞ is the observation of agent i.

• T is the set of conditional transition probabilities. We assume that~v is deterministic and only
determined by the destinations of the joint movement of agents. ~se follows a discrete-time

Markov process with
QN

n¼1 K
n
RK

n
I states.
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• O is the set of observation probabilities. As an observation~o is directly a part of some states,
the observation probability Oð~oj~s 0;~aÞ ¼ 1 if~o is consistent with the corresponding part of
~s 0 and Oð~oj~s 0;~aÞ ¼ 0 otherwise.

• r:A ×O! R is a reward function. rð~a;~oÞ is the sum of the reward obtained by the agents
which associates to the joint action~a and observation~o:

rð~a;~oÞ ¼
X
vi2~v

a
1

nvi

f iðsiIÞ � ð1� aÞciðsiRÞ
 !

where nvi is the number of agents who are visiting vi.

The objective of the agents is then to choose the movement actions sequentially to maximize
the total expected reward accumulated over T steps.

Then, we note that, while the state variable described in Eqs (2) and (3) can be used to ex-
press the belief vector of the environment states for a multi-agent POMDP, the joint action
space of the POMDP is the Cartesian product of the action and observation spaces of the indi-
vidual agents. However, in so doing, the size of the joint action space and joint observation
space grows exponentially with the number of agents jMj, allowing only the smallest of prob-
lem instances to be solved. Instead, sequentially computing policies for individual agents as in
our multi-agent algorithm avoids this problem of computing a joint policy for the team at the
expense of solution quality. However, a bounded optimal of this multi-agent algorithm is
guaranteed (we analyse this later).

Similar methods have been successfully used to solve multi-agent problems [3, 8]. As these
formulations are different from our partially observable scenarios, a straightforward applica-
tion of their methods is not possible. Hence, we consider how to sequentially compute policies
for individual agents in partially observable problem using our online single-agent algorithm.

When sequentially computing policies for individual agents using our predictive heuristic,
there implicitly exists an order in which the agents make actions; agent 1 completes D step ac-
tions of its best policy, agent 2 second, etc.. The expected future reward of a policy pi

DðtÞ of
agent i is conditioned on position vi(t), belief vectorC(t) and the best policies of the previously
computed policies of agentsM−i = {1,. . ., i−1}.

The best online patrolling policy for agent i in a multi-agent setting is recursively defined as:

p̂�1 ¼ argmaxp̂1R
0ðv1ðtÞ;CðtÞÞ

p̂�2 ¼ argmaxp̂2R
0ðv2ðtÞ;CðtÞ; p̂�1Þ

..

.

p̂�i ¼ argmaxp̂ iR
0ðviðtÞ;CðtÞ; p̂�1; . . . ; p̂�i�1Þ

ð12Þ

where we use p̂�i denotes the best policy of agent i.
To ensure the reward function only takes into account the marginal reward value, we need

to exclude double counting. There are two types of double counting. First, synchronous double
counting, which occurs when two agents patrol the same cluster within the same time step. In
this case the reward for patrolling the vertex is received twice. Second, asynchronous double
counting, which occurs when agent i decides to visit vertex vn at t1, and there was an action of
visiting vn by agent j (j< i) at t2 (t1 < t2) during the D horizon i.e., the agent j will visit vertex
vn after agent i. For the situation where agent j visits vertex vn before agent i (i.e. t1� t2), it has

been accounted when calculating E½R̂ðpDðtÞÞ� in Eq (9).
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Here, we show how to deal with the asynchronous double counting, i.e., agent i decides to
visit vertex vn at t1 and there was an action of visiting vn by agent j (j< i) at t2 (t1 < t2) during
the D horizon. Without loss of generality, we consider the situation that only vn in pi

DðtÞ of
agent i has been visited by agent j. If more than one agent ofM−i = {1,. . ., i−1} has an action to
visit vn, we assume the time t2 is nearest to t1 (only the nearest one needs to be taken into ac-
count and this can be deduced from the transition Eq (10)). Based on this assumption, we can
see that the expected information reward of agent j for visiting vertex vn is overestimated, as it
is unaware that the i will reset the information at the time t1. Thus, we introduce a penalty p̂ 2
R
þ for agent i that compensates for the reduction of reward of agent j, as follows:

R0iðviðtÞ;CðtÞ; p̂�1; . . . ; p̂�i�1Þ ¼ E½R̂ðpDðtÞÞ� � p̂ ð13Þ

where E½R̂ðpDðtÞÞ� is the expected reward function defined in Eq (9), and p̂ is the loss incurred
by agent j that will visit the vertex vn after i, which is defined as follows:

p̂ ¼ r̂ expected � r̂ revised ð14Þ

where the r̂expected 2 R
þ is the expected reward that agent j computes for visiting vertex vn and

the r̂ revised is the revised expected reward of agent j visiting vertex vn as computed by agent i
considering only its action. We define the revised expected belief states at vertex vn and between
time [t1+1,. . ., t2] are f~wnðt1 þ 1Þ; . . . ; ~wnðt2Þg, which are obtained by the transition Eq (10)
based on the predictive belief state ŵnðt1Þ and action a(t1) = vn. Then the revised expected re-
ward is as follows:

r̂ revised ¼ gt2ða~wn
I ðt2ÞFn � ð1� aÞ~wn

Rðt2ÞLnÞ ð15Þ

Now, using the algorithm to compute the policy of length D as before, we obtain an action
for each individual agent. A team action is formed by combining these individual actions. This
team action is not optimal, as the policy of agent i is computed greedily with respect to the poli-
cies of agentsM−i. However, we can still bound the the performance guarantees compared
with the policy obtained by searching the joint action space.

We use the theorem from [31] to obtain a bound on the value of the greedily selected
policies:

Theorem 2 Let g:2E! R be a non-decreasing sub-modular set function. The greedy algo-
rithm that iteratively selects the element e 2 E that has the highest incremental value with respect
to the previously chosen elements I 2 E:

e ¼ arg max
e2EnI

gðe [ IÞ � gðIÞ ð16Þ

until the resulting set I has the desired cardinality k, has an approximation bound gðIGÞ
gðI�Þ at least

1� k�1
k

� �k
, where I� 2 E is the optimal subset of cardinality k that maximises f.

For the number of agents jMj in our formulation, the approximation bound of the greedy

algorithm is 1� jMj�1
jMj

� �jMj
. It has been shown in [3] that this approximation bound is mono-

tonically decreasing with jMj, and thus as, for jMj !1, the multi-agent policy yields at least
� 63% of the reward obtained using the best policy that searches the joint policy space for jMj
agents.

Having formulated the problem and designed both single-agent and multi-agent algorithms,
we will evaluate our methods in the next section.
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Empirical Evaluation
To empirically evaluate our approach, we applied it to 10 and 15 agents continuously patrolling
in a large graph, which contains 350 vertices and 529 edges. The online computing time limit is
0.5s because agents must decide which locations to visit at each time step within that time
limit. As the single-agent algorithm in the paper can be seen as a special case of the multi-agent
algorithm, we just present the results of the multi-agent algorithm here. In the aforementioned
graph, we simulated two scenarios:

• Scenario A: we use the same Markov information and threat models for every vertex in the
graph;

• Scenario B: we apply 3 different information and threat models to different vertices in the
graph.

Notice that for Scenario A the information and threat models at different locations are ho-
mogeneous. However, as these information and/or threat are non-stationary, the information/
or threat state are various among these locations. We use Scenario A aiming to capture the situ-
ation where the locations in the environment hold same types of information and threat. For
Scenario B, the information and threat models at different locations are heterogeneous, i.e., dif-
ferent locations in the environment may hold various types of information and threat.

We set the parameters in reward function (i.e., Eq 1) and value function (i.e., Eq 6) as: the
weight parameter α = 0.33 and the discount factor γ = 0.9. More specifically, in Scenario A, we
define the two Markov chains as follow:

PR ¼

0:9 0:1 0

0:4 0:4 0:2

0:0 0:2 0:8

2
6664

3
7775

PI ¼

0:8 0:1 0:1 0 0

0:2 0:7 0:0 0:1 0

0:1 0:1 0:7 0:1 0

0 0:0 0:1 0:8 0:1

0 0 0:0 0:1 0:9

2
66666666664

3
77777777775

Here, the transition function PR and PI satisfies monotonic assumption of Eq (7). For exam-
ple, the first two rows in PR satisfy the constraints in Eq (8) that 0.9� 0.4, 0.9+0.1� 0.4+0.4
and 0.9+0.1+0.0� 0.4+0.4+0.2. The information and threat value vectors are respectively set
as F = [0 1 2 3 4] and L = [0 1 2]. In Scenario B, we attribute several different Markov models to
different vertices. A problem of 15 agents patrolling is shown in Fig 2, where the size of the cir-
cle of each location denotes the absolute value of instance reward of each vertex, the colour de-
notes its sign (black is positive and red is negative), the green circles are agents’ current
locations and “R” and “r” in lower right of each vertex denotes the threat state of this vertex is
“2” and “1” respectively.

For standard POMDP solvers such as POMCP, the size of the joint action space and joint
observation space grow exponentially with the number of agents, which makes them are intrac-
table for our multi-agent patrolling problem with large number of actions and observations.
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Hence, we benchmark against a random algorithm (Random) and a baseline algorithm (Base-
line), and measure the total reward of the information value and the damage suffered of agents
using them. Specifically,

• Randommoves the agents to a random location adjacent to the agents’ current position.

• Baselinemoves the agents to the adjacent location with the highest value in the next step.
We assume the baseline algorithm sequentially computes policies for individual agents to
avoid different agents selecting the same vertex, which is similar to PH-1.

• PH-D is our multi-agent patrolling algorithm, where D is the maximum horizon, i.e. the
number of horizons we look ahead. We adjust maximum horizon D from the set {2,4,8} to

Fig 2. Scenario of 15 agents patrolling.

doi:10.1371/journal.pone.0130154.g002
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investigate the extra computation involved for higher values of maximum horizon. We illus-
trated the results of our algorithms of different maximum horizon.

The initial locations of the agents are randomly distributed in the graph. Agents patrol con-
tinuously for 3000 time steps in the stochastically changing graph. For each scenario and each
algorithm we ran 1000 rounds and plotted the results in Figs 3 and 4 where the error bars de-
pict the 95% confidence intervals around the means. Non-overlapping error bars invalidate the
null hypothesis with α = 0.05. In both scenarios, Random performs poorly and its total reward
never reaches more than 30% of the reward obtained by the other two algorithms. In Scenario
A, both PH-8 and Baseline perform well, and PH-8 outperforms than baseline algorithm by at
least 5%. However, for the graph with different Markov models in Scenario B, our algorithm is
significantly better than all the other algorithms, and PH-8 outperforms the baseline algorithm
by more than 44% for 10 agents and by 21% for 15 agents. In addition, with different maximum
horizon D from {2,4,8}, the reward obtained by PH-D increases with D as well as its computa-
tion time increases with D exponentially. For D> 8, the computing time for each step is out of
our time limit for online decision making. Thus, we can conclude that the use of our predictive

Fig 3. Rewards in Scenario A.

doi:10.1371/journal.pone.0130154.g003

Fig 4. Rewards in Scenario B.

doi:10.1371/journal.pone.0130154.g004

Multi-Agent Patrolling under Uncertainty and Threats

PLOS ONE | DOI:10.1371/journal.pone.0130154 June 18, 2015 17 / 19



heuristic in Ph-D has a significant impact on performance and that D can be adjusted to trade-
off between quality and computation time while still outperforming baseline algorithms.

Conclusion
In this paper, we developed an online multi-agent patrolling algorithm for large partial observ-
able and stochastic environment where the information are distributed with threats. Specifical-
ly, a predictive heuristic is defined to evaluate the policies of looking ahead several steps. For
the multi-agent algorithm, we extended the sequential policy computation method for individ-
ual agents to deal with partially observable problems. We empirically showed that for 10 agents
in a large graph, our algorithm outperforms the baseline algorithm by more than 44%. In our
future work, on the one hand, as this is the first algorithm for patrolling with uncertainty and
threats, we plan to devise a better heuristic and algorithms that provide theoretical perfor-
mance guarantees in our future work. One the other hand, as our formulation is a basic model
of UAVs patrolling under uncertainty and threats, we will consider that the communication
system of the agents may locally break down by suffering from harms or some agents may get
destroyed due to cumulated harms.
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