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Effective Offline Robot Learning with Structured
Task Graph

Yiwen Hou∗, Jinming Ma∗, Haoyuan Sun and Feng Wu

Abstract—Offline reinforcement learning (RL) has shown great
potential in many robotic tasks, where doing trial-and-error with
the environment is risky, costly, or time-consuming. However, it
is still hard to succeed in long-horizon tasks especially when
given suboptimal and multimodal offline datasets. Nevertheless,
existing RL methods rarely consider the structured information
in offline datasets, which are commonly found in many robotic
tasks. To address these challenges, we propose a novel offline RL
approach that combines the techniques of dataset augmentation
and subtask relabeling. Specifically, we first extract the subtasks
and build the task graph based on the structured information
in offline datasets. We then use the task graph to sample and
generate an augmented dataset, which is more suitable for offline
RL learning. After that, we relabel the dataset according to
the task graph and finally learn a subtask-conditioned policy to
complete the task. By doing so, we decompose the task of reaching
a long-horizon goal state into a sequence of easier subtasks. This
is not only useful for handling the long-horizon problem, but also
reduces the error introduced by the offline dataset. We conducted
extensive experiments in both the D4RL benchmark dataset
and real-world robot with complex manipulation tasks. The
experimental results show that our method significantly advances
the state-of-the-art baselines in most tasks, particularly in long-
horizon manipulation tasks with limited human demonstrations.

Index Terms—Reinforcement Learning, Learning from
Demonstration.

I. INTRODUCTION

IN many robotic tasks, reinforcement learning (RL) has
achieved great success in real-world scenarios [1], [2].

However, the learning paradigm of RL usually requires a large
amount of interactions with the environment, which may be
risky, costly, or time-consuming. For instance, in the kitchen
task [3] as shown in Fig. 1, the robot needs to place several
items in target locations. Obviously, interacting with the com-
plex kitchen environment via trial-and-error is impractical and
may cause damage to the robot or environment. Most recently,
offline RL has been proposed and offers a promising approach
for robotic applications. Compared to its online counterpart,
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Fig. 1. Top: The target state is to have the microwave (green dots) and sliding
cabinet door (red dots) open with the kettle (yellow dots) on the top burner.
Black dots refer to other tasks, which is a distraction for reaching the target
state. Bottom: From collected undirected offline data, we could build the task
graph and sample the optimal subtask trajectories towards the target state (the
bold path in the graph).

it enables learning policies merely from previously collected
datasets. Hence it is more effective for the RL robot to learn
policy offline for complex tasks.

Unfortunately, recent efforts show that offline RL algo-
rithms may fail to learn a reasonable policy due to the error
accumulation during policy training [4], [5]. This is caused
by the distribution shift between the current learned policy
and the data distribution of the offline dataset, which leads
to an overestimation of the Q-value in out-of-distribution
(OOD) actions. Consequently, it will result in severe one-
step extrapolation errors which accumulates via the Bellman
backup operator, and as the task horizon increases, the rapidly
increased long-horizon error accumulation will ultimately lead
to the collapse of the entire policy learning. In complex robotic
applications like the aforementioned kitchen task, the pre-
collected data is sparse in the high-dimensional state and
action spaces and the horizon is quite long, which is more
likely to cause the long-horizon error accumulation.

Another key challenge in offline RL is the suboptimality
and multimodality of the dataset due to the poor and diverse
behavior policies for data collection. Specifically, most trajec-
tories in the dataset may fail to or only partially complete the
task. Assume that the kitchen task is to put the microwave,
kettle, light, and cabinet to their target states respectively.
Note that the items may be placed in different orders. In data
collection, the robot may start with each item and try multiple
solutions, which will make the dataset multimodal. Moreover,
it is likely that the dataset is not specifically collected for
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the target task. Therefore, it is expected to be suboptimal and
noisy in practice.

To date, researchers have studied several techniques to
address the aforementioned challenges in offline RL based on
constrained [4], [6]–[8], conservative [9]–[11] or in-sample
[12], [13] methods. Another series of methods avoid the
OOD issue based on imitation learning (IL) methods [14]–
[16], which heavily depend on the quantity and quality of
expert demonstrations [6], [17]. However, those methods are
not very effective because they have not explored certain
structured information concealed within the datasets. These
structured information is often readily available in robotic
applications. For example, in the kitchen task, placing different
items has structural features between subtasks. In navigation
tasks, there is usually a structure of the road network. Such
structured information can help us break down tasks and
organize datasets in a more structured manner. As shown later
in our experiments, this is beneficial for tackling long-horizon
complex tasks with suboptimal data.

In this paper, we propose a novel offline RL approach to uti-
lize the structured information and address the key challenges
of long-horizon tasks with suboptimal datasets. The basic idea
is to decompose the long-horizon difficult task into short and
simple subtasks by utilizing the structured information in the
datasets. To this end, we first introduce the concept of task
graph and build it from the offline dataset, as shown in Fig. 1.
This task graph is useful to find the optimal subtask sequence
from each subtask to the complete task. Based on it, we then
sample complete trajectories to form the augmented dataset.
Intuitively, the augmented dataset has better coverage of the
path toward the overall task, which is beneficial to offline pol-
icy learning. After that, we relabel the dataset according to the
task graph, which will decompose the long-horizon complex
tasks and alleviate the long-horizon error accumulation. Given
the relabeled data, we apply existing offline RL methods (e.g.,
BCQ [6], IQL [12]) to train a policy for completing the whole
task. We first conducted several experiments in the common
offline RL benchmark — the D4RL dataset [18] and tested
on manipulation (i.e., Adroit and FrankaKitchen) tasks. We
further validate the effectiveness of our method in a real-world
manipulation task. Experimental results show that our method
achieved substantially better performance than the state-of-
the-art, in the difficult long-horizon manipulation tasks with
suboptimal and multimodal datasets.

II. PROBLEM STATEMENT

We model the problem as a Markov Decision Process (MDP):
M = (S,A, P, ρ0, r, γ), where S is the state space, A is the
action space; P : S × A × S → [0, 1] is the environment
dynamics; ρ0 ∈ ∆(S) is the distribution of the initial states;
r(s, a) : S ×A → R is the reward function; γ ∈ (0, 1] is the
discount factor. The goal of RL is to learn a policy π(a|s) :
S → ∆(A) that maximizes the cumulative discounted returns
J(π) = Eπ [

∑∞
t=0 γ

tr(st, at)].
Here, we consider that the robot can only learn its policy

from a pre-collected offline dataset D = {τi}Ni=1, where each
trajectory τ = (s0, a0, s1, a1, . . . ) with s0 ∼ ρ0. It is worth

noting that the reward r is not required in our setting, which
may not be readily available in real-world logged datasets.

As aforementioned, our goal is to solve the offline RL
problem for domains with long horizon tasks using datasets
collected by suboptimal behavior policies.

III. MAIN METHOD

We propose a novel approach for offline RL based on the
structured information in the dataset. As shown in Fig. 2,
we first build a task graph using the trajectories in the
offline dataset. Then we sample the new complete trajectories
from the task graph and form the augmented dataset. Finally,
we train a policy using the augmented dataset with subtask
relabeling. In what follows, we will give more details about
the major procedures of our method.

A. Building Task Graph from Offline Dataset

We first introduce the concept of task graph and then propose
the process of building it from the offline dataset. The basic
idea is that we want to decompose complex long-horizon tasks
into a sequence of easier subtasks and build links between
the subtasks according to the offline dataset. After building
the task graph, we can find the optimal subtask sequence via
subtasks to complete the final task.

Specifically, given the subtasks Gsub =
{gi | gi ∈ S, i = 1, 2, . . . , ng} where ng is the number
of subtasks, the task graph is a weighted and directed graph:
G = {V,E} with a weight function w : E → R. As shown
in Fig. 2, each node v ∈ V corresponds to a sequence
of subtask states

[
g0, g1, g2, . . . , gk

]
, where superscript k

represents the k-th task to complete, g0 = g0 = s0 is the
initial state with no subtask completed, g1, g2, . . . , gk ∈ Gsub
and ∀gm, gn ∈

[
g1, g2, . . . , gk

]
, gm ̸= gn, representing the

state of accomplishing the subtasks
[
g1, g2, . . . , gk

]
in order.

For ∀vi, vj ∈ V , the directed edge eij exist if and only if
vi [−1] = vj [−2], meaning the last subtask in vi is equal
to the second last one in vj . For example, as shown in Fig.
2, the root represents the node [g0], the directed edge from
[g0] to [g0, g2] means to complete the subtask g2 from the
initial state g0, Similarly, the directed edge from [g0, g2, g3]
to [g0, g2, g3, g1] means to complete the subtask g1 from the
subtask g3. We additionally add a virtual success node vsucc
(star in Fig. 2), and link the nodes that complete all the
subtasks to vsucc with a virtual edge (blue dashed line). The
weight w(eij) from node vi to vj represents the estimate of
the distance of edge eij from the subtask gi to gj , where
gi = vi [−1] and gj = vj [−1].

When there are multiple paths from the initial node [g0]
to the virtual success node vsucc, which means that multiple
subtask sequences can complete the whole task, it is important
to find the most suitable path for offline policy learning. With
the task graph, we can find the optimal subtask sequence.
Note that the optimal subtask sequence needs to consider
both the travel step (i.e., lij) and the data count (i.e., Nij)
between subtasks, which is critical for offline settings. If the
amount of data is not taken into account, the optimal subtask
sequence may lie in some accidental short paths, which is not
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Fig. 2. Overview of offline robot task learning with Structured Task Graph from datasets. Each dot represents a subtask. The arrows in dataset mean the
trajectories from one subtask to another, while the arrows in the Task Graph refer to the edges between the nodes (the subtask sequence).

conducive to offline policy learning due to the scarcity of data.
If the travel step is not considered, learning policies between
subtasks with longer steps will be more likely to suffer from
long-horizon error accumulation. Thus, to make a trade-off
between lij and Nij , we define the weight w(eij) as

w(eij) = d(gi, gj) = lij + α
1

Nij
(1)

where lij refers to the average trajectory time-step from gi
to gj , Nij refers to the number of trajectories from gi to gj
that exist in the dataset, and α is the coefficient to balance the
optimality and reachability. If there is no trajectory from the
subtask gi to gj , the distance is considered infinite. We assign
w(eij) = 0 for the virtual edges to vsucc.

Now, we can build the task graph based on the trajectories
in the datasets as shown in Algorithm 1.

1) Detecting Subtasks from Offline Dataset: To build the
task graph, we need to get a subtask set Gsub, which is
necessary to complete the whole task. We use feature detector
Ψ : s → P(F ) to represent the abstract feature of the
state s, which is commonly used to detect features in robot
application [19]. Here, F is a set of propositions and P(F )
is the power set of F . In real-world tasks, these detectors can
be acquired through manually crafted rules based on sensory
input (e.g., RGB-D cameras, force sensors) or by training
CNNs to recognize the pose of specific objects relevant to the
task. Note that we presume that the feature detector adequately
decomposes the task, which is necessary for the construction
of the task graph. With the feature detector Ψ representing
the abstract feature of the state, an event occurs when the
difference set of p = Ψ(st)−Ψ(st−1) ̸= ∅, which means that
a new proposition is true. We could utilize the event to trim
the trajectories in the datasets, and find the subtask set Gsub,
each subtask g ∈ Gsub could be computed by the mean of the
st when the corresponding event occurs.

Example 3.1: In the Kitchen task, the final task is to
put the microwave, kettle, and cabinet in their target states
respectively. So the proposition set F = {microwave is
open, the kettle is at the target place, the cabinet is open},

we denote this as F = {m, k, c} for brevity, and P(F ) =
{{}, {m}, {k}, {c}, {m, k}, {m, c}, {k, c}, {m, k, c}}. The
positions of the three items can be obtained through the
RGB-D cameras, and the feature detector Ψ can be directly
specified as whether the state of the object reaches the target
state in such a case. As for the events, take the kettle subtask
as an example, if Ψ(st) = {m} and Ψ(st+1) = {m, k}, which
means the kettle is successfully placed in the desired place at
t+1, we put st+1 in a set Gk. Finally, we compute the mean
of the states in Gk (i.e., mean(Gk)) as the representation of
the kettle subtask.

2) Generating Task Graph with Subtasks: With the event
and corresponding subtask, we trim all trajectories T in
the dataset into sub-trajectories T initial = {T s0→i} and
T sub = {T i→j}, where the initial state s0 ∼ ρ0, i, j ∈
{g1, g2, . . . , gng

} and i ̸= j. Here, T i→j represents the sub-
trajectories that reach the subtask gj from the subtask gi and
do not pass through other subtasks. So T initial contains all
sub-trajectories from the initial state to one of the subtasks,
and T sub contains all sub-trajectories from one subtask to
another. Finally, we build the subtask graph G with nodes
corresponding to subtask sequence state and edge weights
estimated by Eq. 1.

Example 3.2: In the Kitchen task, suppose a trajectory
completes (k,m, c) in sequence at time (t1, t2, t3). We put
τ [0 : t1] into T s0→k, τ [t1 : t2] into T k→m, and τ [t2 : t3] into
T m→c. What’s more, for the built task graph in the Kitchen
example, the node [g0, gm, gc] refers to an abstract state that
completes gm and gc in order from initial state g0. Regarding
edge weights, the edge weight from node v1 = [g0, gm] to
node v2 = [g0, gm, gc] is w(e12) = lmc + α 1

Nmc
, where lmc

and Nmc are statistics on T m→c.

B. Augmenting Dataset via Sampling Task Graph

As aforementioned, the offline dataset may contain many sub-
optimal trajectories. Here, we augment the dataset by sampling
optimal trajectories from the task graph. Intuitively, those
trajectory samples can help policy learning avoid meaningless
explorations and make it more stable and faster to converge.
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Algorithm 1 Task Graph Generation
Input: feature detector Ψ, offline dataset D
1: Initialize T initial ← ∅
2: Initialize T pi→pj ← ∅,∀pi, pj ∈ F, pi ̸= pj
3: Initialize Gp ← ∅,∀p ∈ F
4: for T in D do ▷ Trim offline dataset D based on Ψ
5: ind start = 0 ▷ Initialize start index
6: for t = 1, . . . , T do
7: if p = Ψ(st)−Ψ(st−1) ̸= ∅ then
8: if ind start = 0 then
9: T initial ← T initial ∪ T [ind start, t]

10: else
11: T p′→p ← T p′→p ∪ T [ind start, t]
12: ind start = t, p′ = p,Gp ← Gp ∪ st
13: Gsub ← ∅
14: for p in F do ▷ Subtask computation
15: Gsub ← Gsub ∪mean(Gp)
16: Tsub ←

⋃
T gi→gj∀gi, gj ∈ Gsub, gi ̸= gj

17: Dtrim ← Tinitial ∪ Tsub
18: Build the task graph G with the node corresponding to

subtask sequence state and the edge weight estimated
following Eq. 1

Output: task graph G = {V,E}, trimmed dataset Dtrim

Given the task graph G, we can find the optimal task
sequence from the initial node [g0] to the virtual success
node vsucc. Without loss of generality, we assume that the
optimal sequence of subtasks is [g0, g1, g2, ..., gn]. To get
the sub-trajectory from gi → gi+1, we sample τi→i+1 and
concatenate those sub-trajectories into a complete trajectory,
i.e., τ = concatenate(τg0→g1 , τg1→g2 , ..., τgn−1→gn). Then
this sampled trajectory τ is put back in the data set.

Note that the trajectories in original datasets may be gener-
ated by multiple behavior policies, which exhibit high diversity
in how sub-task instances are solved. For example, the robotic
arm can grasp different positions of the cabinet door and
then open it. Given the optimal subtask sequence in the task
graph, there are still many possible sub-trajectory from gi to
gj in T i→j . In order to generate better trajectories, we use
the weighted sampling technique. Specifically, when sampling
τi→j ∼ p(τki→j), the shorter sub-trajectory will be given a
higher sampling probability as:

p(τki→j) =
exp(γdk

i→j )∑N
n=1 exp(γ

dn
i→j )

, ∀τki→j ∈ T i→j (2)

where N = |T i→j | is the number of sub-trajectories in T i→j ,
k = 0, 1, . . . , N − 1 is the kth trajectory in T i→j , dki→j

represents the distance of τki→j defined in Eq. 1, and γ is
the discount factor. By sampling the trajectory repeatedly,
we obtain the augmented dataset, containing optimal and
unimodal distributed trajectories.

C. Learning Policy with Subtask Relabeled Dataset

To alleviate the severe extrapolation error problem in long
horizon tasks, we use the subtask relabeling based on the task
graph, which provides a better relabeling for the offline dataset.

Algorithm 2 Dataset Augmentation and Subtask Relabeling
Input: Task graph G = {V,E}, Trimed data Dtrim, Aug-

ment percent K
1: Initialize DAug ← Dtrim,Drelabel ← ∅
2: Sample s0 ∼ ρ0, find optimal subtask sequence
{g1, g2, ..., gn} from initial state s0 to final goal based
on task graph G

3: repeat ▷ Dataset Augmentation
4: for i = 0, . . . , n-1 do
5: sample τi→i+1 ∼ p(τki→i+1) with Eq. 2
6: DAug ← DAug ∪ τi→i+1

7: until size(DAug) > K × size(Dtrim)
8: for τi→j in DAug do ▷ Subtask Relabeling
9: τrelabel ← ∅

10: for transition (s, a, r, g) in τi→j do
11: ĝ = gj , r̂ = I(ϕ(s) ∈ Gsub)
12: τrelabel ← τrelabel ∪ (s, a, r̂, ĝ)
13: Drelabel ← Drelabel ∪ τrelabel
14: Train the policy π on Drelabel

Output: the final policy π

The insight behind is that extrapolation error will accumulate
rapidly as the horizon of the bellman backup increases [5],
[20], [21], by decomposing the long-horizon task into the sub-
tasks, the horizon of the bellman backup will be short enough
for the offline RL algorithm to fix the extrapolation error.
Specifically, the trajectories in the augmented datasets DAug

are relabeled with the subtask to form a relabeled dataset:
Drelabel = {(s, a, r̂, ĝ)}, where ĝ ∈ Gsub is the subtask and
r̂ is the new reward. The relabel procedure is based on the
subtask set Gsub and the sub trajectories τi→j split by the
subtask in DAug . For each transition (s, a, r, g) in τi→j , the
task will be relabeled as gj , well the new reward is specified
as r̂t = 1 when ϕ(st) ∈ Gsub, otherwise r̂t = 0.

To learn a policy in the offline manner, we extend BCQ
[6] by simply concatenating states s and desired subtasks g as
input states. Note that we choose BCQ for its simplicity and
effectiveness though any offline RL algorithm can be used.
The policy conditioned on subtasks is trained as follows:

π(s) = argmaxaj
Q (s, aj + ξ (s, aj , g,Φ) , g) ,

s.t. aj ∼ Gw(s, g)
(3)

where ξ(s, aj , g,Φ) is the perturbation model and Gw(s, g)
is the generative model. The Q-network Qθ(s, a, g) is trained
with the loss function:

L = [Qθ(s, a, g)−Qtarget]
2,where

Qtarget = r + γ max
a′∼Gw(s′,g)

Qθ−(s′, a′, g) (4)

The overall algorithm is summarized in Algorithm 2.

IV. EXPERIMENTS

We first evaluate our method on two complex manipulation
robotic tasks (i.e., Adroit and FrankaKitchen) with different
offline datasets. Additionally, we conduct ablation studies to
better understand the effectiveness of our key techniques.
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Fig. 3. Adroit and FrankaKitchen: learning curve our method and the baselines. Results are averaged over 5 random seeds, and the shadow is the standard
deviation. Here, we focus on cloned dataset. In practice, it is more realistic to learn from human demonstrations and cloned dataset.

Finally, we evaluate our method on a challenging real-world
manipulation task.

A. Manipulation Experiments

1) Experiment Settings: The Adroit domain involves con-
trolling a 24-DoF simulated hand tasked with hammering a
nail or opening a door. In the tasks, we tested in the follow-
ing datasets: i) human: 25 sub-optimal human demonstration
trajectories, ii) cloned: trajectories collected by an imitation
policy trained with the demonstrations + demonstration tra-
jectories, and iii) expert: a large number of trajectories from
a fine-tuned RL policy. In the human and cloned datasets,
there are many suboptimal trajectories and very narrow data
distributions, which is difficult to learn an effective policy.

The FrankaKitchen domain involves controlling a 9-DoF
Franka robot in a kitchen environment to manipulate multiple
objects (e.g., microwave, kettle, etc.). We test on 3 datasets of
human demonstrations: i) complete: 19 near-optimal demon-
stration trajectories completing all the desired tasks in order,
ii) partial: only a subset of the desired tasks in each trajectory
is completed, and the dataset is mixed with lots of trajectories
not necessarily related to the desired tasks, and iii) mixed:
no trajectories which solve the task completely, only a proper
subset of the desired tasks in each trajectory is completed.
These tasks are really challenging in terms of both the dataset
composition and high dimensionality.

2) Baseline Methods: We compare our method with the
leading offline RL algorithms: 1) BC [22]: a popular imitation
learning method; 2) BCQ [6]: BCQ aims to perform Q-
learning with batch-constrain; 3) CQL [10]: CQL learns a
lower-bound or conservative Q-function for OOD actions; 4)
IQL [12]: IQL avoids querying values of unseen actions;
5) WGCSL [15]: the weighted goal-conditioned supervised
learning, re-weighting the trajectories with advantage value;
6) IRIS [16]: a hierarchical RL, with a high-level offline RL
goal planner and a low-level imitation learning policy.

3) Results: As shown in Fig. 3, our method outperforms
the other baselines in the speed of convergence, the stability
of learning, and the solution quality. This confirms that our
method can effectively solve long-horizon tasks with subopti-
mal and multimodal datasets.
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Fig. 4. Experiments for different modules in Kitchen-mixed dataset.

In Table I, we report the evaluation results on both of the
tasks. In tasks with sufficient and high-quality datasets, most
baselines can achieve good results, such as kitchen-complete.
With high-quality datasets, IQL and WGCSL perform well,
since they utilize imitation learning with exponential advan-
tage weight. But they failed in the tasks with the suboptimal
dataset, i.e., kitchen-mixed and kitchen-partial. Compared to
these methods, our method deals with long-horizon tasks by
utilizing the task graph and achieved good performance. This
is due to the subtask decomposing the long-horizon difficult
task into some short-horizon simple subtasks, which makes the
backup of Q-values faster and less likely to cause long-horizon
error accumulation.

For more complex dexterous manipulation tasks, most
baselines fail to learn policy, such as hammer-human and
hammer-cloned. In off-policy methods, such as BCQ and
CQL, the error accumulation is further exacerbated by the
high-dimensional state-action space and limited dataset. While
imitation learning methods, such as IQL and BC, encounter
the challenge of compounded errors resulting from long-
horizon tasks. WGCSL did not perform well with human or
cloned datasets, since the inadequate coverage of the desired
goal distribution and ultimately hindered performance on tasks
requiring long-term planning. IRIS also faces the issue of
inaccurate estimation of the value function for goal planner.
From the results, we can see that our method substantially
outperformed all the compared methods, especially in the
more challenging dexterous manipulation tasks. This confirms
that our method can effectively solve long-horizon tasks with
suboptimal datasets.
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TABLE I
AVERAGE SCORE OF ALL METHODS IN THE THREE DOMAINS WITH DIFFERENT TYPE OF THE DATASETS. (BEST VALUES ARE IN BOLD).

Domain Dataset type BCQ BC CQL IQL WGCSL IRIS Ours

Adroit

hammer-human -233.13 27.01 300.2 23.2 41.35 64.42 3122.68
door-human -59.21 -1.61 234.3 72.4 7.78 31.70 275.84

hammer-cloned -117.47 -219.99 -13.15 -69.61 -134.59 -173.22 2045.11
door-cloned -21.22 -58.24 -51.40 58.28 -46.19 -49.64 246.07

hammer-expert 16294.25 15286.51 15902.1 15753.0 16205.98 16283.52 16336.14
door-expert 2804.60 3009.40 2926.8 2945.2 2990.44 3019.44 3022.88

FrankaKitchen
kitchen-complete 1.53 1.16 0.38 2.5 2.01 1.88 1.91

kitchen-partial 1.44 1.43 1.23 1.68 0.16 1.82 2.76
kitchen-mixed 1.76 1.90 0.14 1.59 0.32 2.08 3.17

(a) Offline Dataset (b) Augmented Dataset

Fig. 5. Distribution of the original and augmented dataset in Door-human
dataset. In the given visual representation, the start of the task is denoted by
the green star while the end of the task is denoted by the red star.
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Fig. 6. Estimated Q-values in the Adroit Domain.

B. Ablation Experiments

We firstly study the usefulness of our data augumentation and
subtask relabeling modules in Kitchen-mixed dataset. To this
end, we trained g-BCQ with only subtask relabeling, g-BCQ
with only dataset augmentation, and g-BCQ with both subtask
relabeling and dataset augment (i.e., g-BCQ w/ SR, g-BCQ w/
DA, and Ours), where g-BCQ is the simple extension of BCQ
with the concatenate of state and target task as input. As shown
in Fig. 4, the subtask relabeling can improve the success
rate, while the policy trained without it has a significant
decrease in performance. As mentioned, the purpose of subtask
relabeling is to decompose difficult tasks into multiple easy
tasks to make policy learning easier. Meanwhile, the dataset
augmentation stabilizes the training process, making the robot
better understand how to successfully complete the task. All in
all, both of the modules are effective for offline robot learning.

1) Data Augmentation: To better understand the role of our
data augmentation module, we visualize the data distribution

TABLE II
AVERAGE SCORES OF OUR METHOD WITH DIFFERENT UNDERLYING

ALGORITHMS. (ORIG. REFERS TO THE ORIGINAL VERSION)

BCQ BC CQL IQL
Orig. Ours Orig. Ours Orig. Ours Orig. Ours

kitchen-complete 1.53 1.91 1.16 2.10 0.38 0.63 2.50 2.58
kitchen-partial 1.44 2.76 1.43 2.61 1.23 1.63 1.68 2.64
kitchen-mixed 1.76 3.17 1.90 2.82 0.14 1.60 1.59 3.04

of the augmented data in the Adroit domain. As shown in Fig.
5, the original data distribution contains a limited number of
trajectories that have successfully completed the task (reached
the red star), whereas the augmented data distribution provides
improved coverage of the path leading to the red star, which
is beneficial for the training process.

2) Subtask Relabeling: We plot the estimation of the Q-
value during a training epoch in the Door domain with the
cloned dataset, which is narrowly distributed. From Fig. 6, the
estimation of the BCQ goes to infinite, which is pathological
and unrealistic. This phenomenon of offline training is caused
by the long-horizon error accumulation. Although we use
BCQ for handling OOD, it still easily occurs due to the high
dimensionality of the state space and narrowly distributed
dataset. However, when decomposing the task into subtasks,
we reduce the possibility of iterative error exploitation [5] by
shortening the horizon of the estimated Q-value in the Bellman
backup.

3) Different underlying algorithms: We validate the adapta-
tion of the proposed method to different underlying algorithms
in the Kitchen domain. As shown in Table II, our method
consistently outperforms all the original offline RL baselines
in all datasets, demonstrating the generality of our methods
to any downstream offline RL algorithms. This shows that by
effectively utilizing the task graph, any downstream algorithms
can be improved consistently.

4) Different weighting schemes: To further study the im-
pact of different weighting schemes on the task graph, we
conducted additional experiments on the Kitchen datasets. The
results in Table III reveal that considering both the travel step
(lij) and the data count (Nij) results in the highest scores
in all datasets. For datasets with homogeneous trajectories
that have the same subtask completion sequence (i.e. Kitchen-
complete), the weighting schemes do not affect. However, for

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3354620

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 04,2024 at 01:36:54 UTC from IEEE Xplore.  Restrictions apply. 



HOU et al.: EFFECTIVE OFFLINE ROBOT LEARNING WITH STRUCTURED TASK GRAPH 7

TABLE III
AVERAGE SCORES WITH DIFFERENT WEIGHTING SCHEMES

Ours Ours (only lij ) Ours (only Nij )

kitchen-complete 1.91 1.91 1.91
kitchen-partial 2.76 1.64 2.76
kitchen-mixed* 3.17 3.17 2.03

the dataset with mixed multimodal data, our weighting metric
is really effective. For the Kitchen-partial dataset, there exist
some trajectories that occasionally complete certain tasks. If
we only consider steps lij , the optimal subtask sequence lies
in such fortuitous trajectories, and the limited amount of data
leads to poor policy. As for the kitchen-mixed* dataset, we
add some new trajectories to the original dataset by adding
Gaussian noise to the state of some sub-trajectories. In such a
dataset, the subtask sequence with the largest amount of data
has longer steps. If we only consider Nij , the optimal subtask
sequence lies in such longer trajectories, resulting in a lower
final score due to the longer horizon of the subtask.

C. Real-World Robotic Manipulation

We conducted an evaluation of our approach on a complex,
long-horizon, real-world manipulation task. We use a 7-DoF
Kinova Gen3 robotic arm equipped with a Robotiq gripper.
As shown in Fig. 7, the task is to build a ladder with three
different blocks. Initially, these blocks are spread out on the
table and our goal is to align them to build the desired shape.

The state space is represented by a 13-dimensional vector,
including end-effector position (3D), gripper opening state
(1D), and position of three blocks (3D × 3). Here, the pose
estimation of the blocks is obtained by Apritag [23] from
the RGB image, which is captured from the RealSense depth
camera D455. The action space is a 4-dimensional vector,
responsible for dictating the velocity of the end-effector (3D)
and the status of the gripper (1D, i.e., open or close). At each
time-step, the reward corresponds to the number of blocks
correctly positioned given the target configuration.

We utilized a rule-based policy written by hands to collect
six different types of trajectories. One type of trajectories
precisely completes our goal task — building the ladder. How-
ever, the other five types of trajectories either partially achieve
the goal task or misplace some blocks, acting as potential
distractions from the goal task. For each trajectory type, we
gathered 20 trajectories, for a total of 120 trajectories. By
doing so, the collected dataset contains multimodal trajectories
with suboptimal and narrow data distribution, which is very
challenging for offline RL.

We conduct offline training for all methods with the same
datasets and then test the trained policies in the real-world
robotic manipulation task. We train different instances of
each method with different random seeds, with each instance
performing 10 evaluation rollouts. The results of the evaluation
are reported in Table IV. We report the Average return and
Average task completion ratio of evaluation rollouts. The task

Initial state

Target state

RealSense Depth Camera D455

Blocks

Robotiq Gripper

7-DoF Kinova Gen3 Arm

Fig. 7. Building blocks with Kinova Gen3 arm.

completion ratio represents the percentage of successfully
placing blocks to build the ladder.

As shown, our method outperforms all baselines in terms of
average return and task completion ratio. The CQL method en-
counters severe out-of-distribution errors, rendering it unable
to pick up any blocks. Relying solely on dataset mimicking,
the BC method misplaces some blocks due to the high
multimodality of the dataset, which results in a low average
return. Other baselines only partially complete the target task,
which may be caused by the inaccurate value estimation of
the long-horizon task. By utilizing the task graph, our method
decomposes the target task into three subtasks and could
successfully complete them in order.1 The results confirm that
our method with the task graph is also effective in real-world
long-horizon robotic tasks.

V. RELATED WORK

A. Offline Reinforcement Learning
In offline RL, the agent needs to learn a policy from a
fixed dataset collected by some behavior policies [6], [24].
As aforementioned, most offline RL methods are based on
constrained, conservative, or in-sample methods. For policy-
constraint methods, they constrain the learned policy to be
close to the behavior policy. It can be implemented via an
explicit action constraint [6], [7], using an implicit regular-
ization [4], [8], or adding an uncertainty weight to the policy
improvement objective [25], [26]. Conservative-based methods
have also proposed to directly regularize the Q-function to
produce lower-bound or conservative Q-function for OOD
actions [9]–[11]. For example, CQL [10] adds a regularizer
to penalize the Q-function of OOD actions and encourage the
Q-function for state-action pairs in the dataset to be large.
In-sample methods avoid querying values of unseen actions
while still enabling multi-step dynamic programming [12],
[13]. Diverging from prior work, we make further use of the
structured information from offline data, which is crucial for
robot learning.

B. Offline Goal-conditioned RL and Offline Hierarchical RL
Generally, our work is related to offline goal-conditioned RL.
Among them, GCSL [27] relabels and simply does goal-
conditioned behavior cloning on relabeled data. WGCSL [15]

1See the attached video for details: https://youtu.be/o-oFSCBaR24
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TABLE IV
AVERAGE SCORES OF ALL METHODS IN REAL-WORLD TASKS (BEST VALUES ARE IN BOLD).

BCQ BC CQL IQL WGCSL IRIS Ours

Average return 184.2 62.7 0.0 36.1 153.2 105.0 342.6
Average task completion ratio 33.3% 25.0% 0.0% 6.7% 27.8% 23.3% 100.0%

extends GCSL by introducing discounted relabeling weight,
exponential advantage weight, and best-advantage weight to
tackle the suboptimal and multimodal problem. Our work
is also related to offline hierarchical RL. IRIS [16] uses a
hierarchical framework to learn from offline datasets, with a
high-level VAE and value function to select a subgoal and train
a low-level goal-conditioned policy with imitation learning.
HiGoC [28] takes advantages of model-based planning method
as a high-level planner and train goal-conditioned polcily on
expert data, which may not be readily accessible. In contrast,
we make further use of the structured information from offline
data to obtain better data distribution for offline RL. Moreover,
we adopt subtask relabeling instead of future hindsight relabel
to learn policy.

VI. CONCLUSION AND DISCUSSION

In this paper, we introduced an offline RL approach to solve
long-horizon tasks with sub-optimal demonstrations. By first
building the task graph from the offline datasets, we subse-
quently augment the dataset by sampling trajectories from the
task graph, and relabel the dataset based on the task graph for
policy learning. Our dataset augmentation technique improves
the data distribution to solve the suboptimal and multimodal
problem of the offline dataset, while the subtask relabeling
decomposed the long-horizon tasks into simple tasks, making
the learning process more stable and faster. Our experiments
on the D4RL dataset and real-world manipulation task confirm
the effectiveness of our method.

The major limitation of our proposed method is that when
the dataset only contains homogeneous trajectories that have
the same subtask completion sequence, our approach will
not fully benefit. The more diverse the dataset, the more
our method benefits. Another consideration is that if the
task graph is quite large or complex, additional computation
costs are required to find the optimal subtask sequence, while
the optimality can be guaranteed. In the future, we plan to
explore more effective techniques for learning subtasks in the
high-dimensional space from the offline datasets and test our
method on more challenging robotic tasks.
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