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Abstract— Offline reinforcement learning (RL) provides a
promising approach to avoid costly online interaction with
the real environment. However, the performance of offline RL
highly depends on the quality of the datasets, which may cause
extrapolation error in the learning process. In many robotic ap-
plications, an inaccurate simulator is often available. However,
the data directly collected from the inaccurate simulator cannot
be directly used in offline RL due to the well-known exploration-
exploitation dilemma and the dynamic gap between inaccurate
simulation and the real environment. To address these issues, we
propose a novel approach to combine the offline dataset and the
inaccurate simulation data in a better manner. Specifically, we
pre-train a generative adversarial network (GAN) model to fit
the state distribution of the offline dataset. Given this, we collect
data from the inaccurate simulator starting from the distribu-
tion provided by the generator and reweight the simulated data
using the discriminator. Our experimental results in the D4RL
benchmark and a real-world manipulation task confirm that
our method can benefit more from both inaccurate simulator
and limited offline datasets to achieve better performance than
the state-of-the-art methods.

I. INTRODUCTION

Deep reinforcement learning (RL) has shown impressive
success in many robotic applications [1]. However, applying
RL to real-world scenarios is still very challenging because
exploration and interaction with real-world environments are
often costly or risky for physical robots, and RL methods
often require millions of such data to learn a good policy.
Most recently, offline RL emerges as a promising solution
to address the dilemma above, allowing for learning efficient
policies offline entirely from previously collected data [2].

However, Offline RL presents several significant chal-
lenges, such as the extrapolation error incurred by the
mismatch between the experience distributions of the learned
policy and the dataset [3]. To minimize this error, most
prior work attempts to constrain the trained policy to the
offline dataset’s action space [3]–[6], value regularization [7],
[8] on out-of-distribution (OOD) actions, or weighted [9]–
[12] or conditioned [13]–[15] behavior cloning. Although
these methods achieve considerable success in the offline
setting, they are still heavily reliant on the quality of the
offline dataset [16]–[18]. If a large portion of state-action
space is not explored within the dataset, offline RL methods
usually fail to learn good policies. In real-world scenarios,
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Fig. 1: Combination of offline datasets from real world and
an inaccurate simulator (MuJoCo) for improving offline RL.

data collection is commonly expensive or limited, resulting
in suboptimal and noisy offline datasets. This directly limits
the potential application of offline RL in robotics.

Fortunately, in many robotics tasks, a simulator (e.g.
Gazebo [19], SimSpark [20], MuJoCo [21]) is often avail-
able. Within a simulator, robots can engage in unrestricted
exploration, gaining access to a vast array of state-action
data. These data can compensate for the limitations of the
offline dataset in hand. Although the combination of real-
world data and simulated data seems promising, there are two
major challenges within this approach. Firstly, although the
simulator provides a risk-free environment for exploration,
low-quality or aimless exploration data might not be suf-
ficient and effective in addressing the OOD issues within
the offline dataset. Thus, striking a balance between the
exploration in the simulator and the exploitation of offline
datasets becomes crucial. Secondly, accurately modeling the
complex dynamics of the real world is often intractable or
expensive. In contrast, inaccurate simulators are relatively
easier to obtain and more efficient (e.g., MuJoCo for RL).
However, if we indiscriminately treat the inaccurate simu-
lated data equally with the real offline data, the dynamics
gap [22] between the real and simulated environments might
adversely impact the effectiveness of offline policy learning.

To address these issues, we propose a novel method called
Offline Reinforcement learning with Inaccurate Simulator
(ORIS), as shown in Fig. 1, which aims to 1) collect
more effective data from the inaccurate simulator to achieve
exploration-exploitation trade-off, and 2) better use the mixed
datasets to alleviate the side-effect of inaccurate simulation.
To this end, we first pre-train a Generative Adversarial
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Network (GAN) [23] model with the offline dataset to fit
the state distribution of the offline dataset. Given this, we
interact with an inaccurate simulator by a hybrid rollout
policy from the initial state distribution provided by the
GAN generator, which effectively balances the exploration-
exploitation dilemma. Then, we employ the GAN discrim-
inator to adeptly integrate both the offline datasets and
the simulated data, reducing the side-effect of inaccurate
simulator and enhancing the precision of Q value estima-
tions. We conducted experiments on the D4RL dataset [24],
a common offline RL benchmark, as well as real-world
robotic manipulations. The experimental results show that
our method achieved better performance than the state-of-
the-art methods especially given limited amount of data.

II. BACKGROUND

We formally model the robotic RL problem as a Markov
Decision Process (MDP): M = (S,A,P, ρ0, r, γ), where
S is the state space, A is the action space; P : S × A ×
S → [0, 1] is the environment dynamics; ρ0 ∈ ∆(S) is the
distribution of the initial states; r(s, a) : S ×A → R is the
reward function; γ ∈ (0, 1] is the discount factor. The goal of
RL is to learn a policy π(a|s) : S → ∆(A) that maximizes
the cumulative discounted returns:

∑∞
t=0 γ

tr(st, at) from the
experiences without directly accessing the model.

To date, off-policy actor-critic algorithms are one of the
most commonly used frameworks to solve the RL problem
without consideration of how the experiences were gener-
ated, which learn a Q-function Qθ(s, a) by minimizing the
Bellman error and a policy πϕ by maximizing the Q-function,
where θ and ϕ are the parameters of Q-function and policy,
and the loss functions are as follow:

LQ(θ) = E
(s,a,s′)∼B

[
(Qθ(s, a)− T πϕQθ(s, a))

2
]

(1)

Lπ(ϕ) = E
(s)∼B,a∼πϕ(·|s)

[−Qθ(s, a)] (2)

where B is the replay buffer, T π is the Bellman operator and
T πQθ(s, a) = r(s, a) + γ Ea′∼π(·|s′)

[
Qθ(s

′, a′)
]
.

In offline RL, offline dataset Doff = {(si, ai, ri, s′i)}
|Doff|
i=1

consists of transitions collected from the real environment M
by some unknown behavior policy β. Here, we additionally
consider an inaccurate simulator modeled as an MDP M̂ =
(S,A, P̂, ρ0, r, γ), where the dynamics of the inaccurate
simulator P̂ is different from the dynamics P in real environ-
ment. We can interact with such an inaccurate simulator by
policy π to collect the data Dsim = {(si, ai, ri, s′i)}

|Dsim|
i=1 . Our

goal is to leverage the augmented dataset D = Doff ∪Dsim to
learn a policy for completing tasks in the real environment.

Given a limited offline dataset and an inaccurate simulator,
there are two key challenges: 1) exploitation-exploration
trade-off when interacting with the simulator to collect useful
data for learning and 2) reducing side-effect when leveraging
both the real data and inaccurate simulation data.

III. METHOD

Here, we propose our method, named Offline Reinforcement
Learning with Inaccurate Simulator (ORIS). As shown in
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Fig. 2: Overview of our ORIS framework.

Fig. 2, the GAN generator G and discriminator D are trained
for addressing the aforementioned challenges. Specifically,
the generator aims to generate states that align with the state
distribution of the offline dataset, while the discriminator is
tasked with discerning whether a given state is either in-
distribution or out-of-distribution. After that, we iteratively
collect data using the inaccurate simulator and train the
policy with the mixed dataset. During data collection, we
interact with the simulator from the restart distribution pro-
vided by the generator G to avoid aimless exploration. For
the trade-off of exploitation-exploration, the rollout policy
πrollout is a hybrid policy consisting of the random policy
and the current policy πϕ. During policy training, we utilize
an off-policy actor-critic algorithm, i.e., SAC [25], training
with both the offline dataset and the collected simulated data.
Here, we adopt the weighted critic loss with discriminator
D to down-weight potentially harmful simulated data. Next,
we will describe our method in more details.

A. Pre-train GAN with Offline Dataset

To improve offline RL with inaccurate simulator, the key
issues are the exploitation-exploration trade-off when sam-
pling and the inaccurate Q value estimation when minimizing
the critic loss due to the dynamics gap. To avoid aimless
exploration, we can sample trajectories starting from the state
distribution fitting the offline dataset. To alleviate inaccurate
Q value estimation, we need to discriminate potentially
harmful data. We will elaborate on these issues later.

Fortunately, the structure of the generator and discrimina-
tor of GAN provides a promising solution to solve these two
problems in a unified manner. Note that we choose GAN
for its simplicity and effectiveness though any generative
model with generator and discriminator (e.g., WGAN [26])
is compatible with our framework. As shown in Fig. 2,
the generator G learns to produce samples that closely
resemble the state distribution of the offline dataset, while
the discriminator D learns to distinguish between samples
generated by G and the real samples from the offline dataset:

min
G

max
D

E
s∼D

[log(D(s))] + E
z∼p(z)

[log(1−D(G(z)))] (3)



To solve the min-max optimization problem, we update the
generator and the discriminator iteratively. At every iteration
k, we update Gk

ψ and Dk
ω as follow:

Gk+1
ψ ← argmin

ψ
E

z∼p(z)

[
log(1−Dk

ω(G
k
ψ(z)))

]
(4)

Dk+1
ω ←argmax

ω
E
s∼D

[
log(Dk

ω(s))
]
+ E
z∼p(z)

[
log(1−Dk

ω(G
k
ψ(z)))

]
(5)

After the GAN is trained, we use the generator Gψ to
produce initial state distributions for the simulated process.
Additionally, the discriminator Dω is employed to assess the
simulated data, in order to reweight it during the off-policy
learning process. Next, we will illustrate how we use the
generator and discriminator to better leverage the potential
of the inaccurate simulator.

B. Collecting Simulated Data with Generator

As aforementioned, using the off-policy algorithm directly
with limited offline data can lead to extrapolation errors
stemming from the out-of-distribution (OOD) issue. This er-
ror cannot be fixed during offline training without additional
online interaction. Therefore, our goal is to supplement the
offline dataset with data from a simulator. However, it is still
challenging to collect useful data for policy training due to
the exploitation-exploration dilemma.

Most methods directly reset to initial states ρ0 when sam-
pling trajectories. However, this will lead to massive aimless
exploration around ρ0, especially for some robotic tasks with
sparse reward. Fortunately, offline datasets usually consist
of some trajectories completing the target task, which can
provide valuable guidance for avoiding such exploration. For
exploitation of the offline dataset, we utilize the generator of
the pre-trained GAN model, which fits the state distribution
of offline datasets. Specifically, we use G(z) to generate the
restart distribution ρG ∼ G(z)+N (0, σI). When interacting
with the simulator starting from s0 ∼ ρG, it is more likely
to sample high-return trajectories, which can be difficult
to explore when starting from ρ0. For exploration within
the simulator, we utilize a hybrid rollout policy similar to
ε-greedy. Specifically, we choose the random policy with
probability p, and the current policy with probability 1− p.
Such a hybrid rollout policy can explore the action space,
effectively rectifying the extrapolation errors associated with
OOD actions and thereby facilitating the discovery of an im-
proved policy around the offline dataset. All in all, the restart
distribution and the hybrid policy balance the exploitation-
exploration dilemma in a more effective way.

C. Reweighting Data with Discriminator

Although simulated data can complement limited offline
data and alleviate unrealistic overestimation of the Q-value,
treating all simulated and real data equally may harm the
performance of the policy due to the dynamics gap. The
primary dynamics gap between M and M̂ originates from
the environment dynamics P , that is, (s, a, r, s′) ∈ Doff and
(s, a, r, ŝ′) ∈ Dsim. Based on the Bellman equation, the Q-
value estimates of similar state-action pairs (s, a) are given

Algorithm 1 Offline RL with Inaccurate Simulator (ORIS)
Input: offline dataset Doff, inaccurate simulator with biased dy-

namics P̂ , rollout horizon H , rollout count C
Output: policy network πϕ
1: Initialize discriminator Dω(·|s) and generator Gψ(·|z)
2: Initialize policy network πϕ and critic network Qθ

3: Initialize replay buffer Dsim ← ∅
4: Pre-train Dω(·|s) and Gψ(·|z) using Eq.4 and Eq.5
5: for epoch = 0, 1, · · · do

6: πrollout =

{
πrandom with probability p

πϕ with probability 1− p

7: for c = 0, 1, . . . , C do ▷ Collect data in simulator
8: Generate a restart state s0 ∼ G(z) +N (0, σI)
9: Rollout H steps in the simulator starting from s0 by

πrollout, and add the rollout to Dsim
10: Sample minibatch data Boff ∼ Doff, Bsim ∼ Dsim
11: Update Qθ and πϕ via minimizing Eq.6 and Eq.7

by: QM(s, a) = r+γ Ea′∼π(·|s′) [Q(s′, a′)] and QM̂(s, a) =

r+γ Ea′∼π(·|ŝ′)
[
Q(ŝ′, a′)

]
. If we directly minimize the critic

loss as delineated in Eq.1, the variance in the target Q-value,
i.e., QM(s, a) and QM̂(s, a), may result in an ambiguous
estimation of Q(s, a). To address this, we propose to assign
a lower weight to the transition in Dsim. By doing so, we
can reduce the impact on the overall Q-value estimation, and
thereby alleviate the potential negative effects caused by the
dynamics gap between M and M̂.

Specifically, we employ adaptive weighting for simulated
data to down-weight any potentially harmful simulated in-
formation. The corresponding weighted critic loss is as:

LQ(θ) = E
(s,a,s′)∼Doff

[
(Qθ(s, a)− T πϕQθ(s, a))

2
]

+ E
(s,a,s′)∼Dsim

w(s)
[
(Qθ(s, a)− T πϕQθ(s, a))

2
] (6)

where w(s) = clip(1 − 2D(s), wmin, wmax), and wmin
is a small positive number. The underlying idea behind
the weight w(s) is as follows. For a given transition
(ssim, asim, rsim, s

′
sim) ∈ Dsim, if the state ssim is in-distribution

(i.e., the offline dataset already contains transitions of ssim),
we assign a small weight to that transition when calculating
the critic loss. This prevents inconsistency in Q-value esti-
mation for ssim between the offline data and simulated data.
In such cases, D(s) → 0.5 and the weight w(s) → wmin.
Conversely, if the state ssim is out-of-distribution and absent
from the offline dataset, there is no need to assign a small
weight to it, as it will not conflict with offline data. For such
states, D(s) → 0 and the weight w(s) → wmax.

Building upon this, we minimize the actor loss by directly
minimizing it over the dataset combining both the offline and
simulated data, Doff ∪ Dsim. The updated actor loss is as:

Lπ(ϕ) = E
s∼Doff∪Dsim,
a∼πϕ(·|s)

[−Qθ(s, a) + λ log πϕ(a|s)] (7)

where λ is the temperature parameter as in SAC. Note that
ORIS can be compatible with any off-policy actor-critic algo-
rithm (e.g., TD3 [27]). With the components described above,
the main procedures of ORIS are outlined in Algorithm 1.



TABLE I: Average normalized scores of all methods. (g2.0) means the simulator with 2 times gravity.

Task Name BC CQL IQL TD3+BC COMBO SQL SAC(g2.0) H2O(g2.0) ORIS(g2.0)(Ours)
hopper-random 3.7±0.6 7.9±0.4 7.9±0.2 8.5±0.6 17.9±1.4 7.8±0.5 10.0±5.6 20.6±9.8 31.4±0.4
hopper-medium-replay 16.6±4.8 88.7±12.9 94.7±8.6 60.9±18.8 89.5±1.8 96.7±3.3 10.0±5.6 46.7±28.0 100.6±0.3
hopper-medium 54.1±3.8 53.0±28.5 66.2±5.7 59.3±4.2 97.2±2.2 73.5±3.4 10.0±5.6 21.6±17.7 99.8±0.8
hopper-medium-expert 53.9±4.7 105.6±12.9 91.5±14.3 98.0±9.4 111.1±2.9 111.8±2.2 10.0±5.6 25.2±24.4 110.1±1.5
walker2d-random 1.3±0.1 5.1±1.3 5.4±1.2 1.6±1.7 7.0±3.6 5.1±0.4 30.2±19.9 12.1±6.3 30.4±15.0
walker2d-medium-replay 20.3±9.8 81.8±2.7 73.8±7.1 81.8±5.5 56.0±8.6 77.2±3.8 30.2±19.9 39.2±25.9 91.5±0.5
walker2d-medium 70.9±11.0 73.3±17.7 78.3±8.7 83.7±2.1 81.9±2.8 84.2±4.6 30.2±19.9 34.4±15.2 86.2±5.3
walker2d-medium-expert 90.1±13.2 107.9±1.6 109.6±1.0 110.1±0.5 103.3±5.6 110.0±0.8 30.2±19.9 27.3±17.0 102.8±2.2
halfcheetah-random 2.2±0.0 17.5±1.5 13.1±1.3 11.0±1.1 38.8±3.7 14.4±1.0 43.3±1.5 35.2±1.4 39.2±1.7
halfcheetah-medium-replay 37.6±2.1 45.5±0.7 44.2±1.2 44.6±0.5 55.1±1.0 44.8±0.7 43.3±1.5 52.8±5.5 59.6±2.4
halfcheetah-medium 43.2±0.6 47.0±0.5 47.4±0.2 48.3±0.3 54.2±1.5 48.3±0.2 43.3±1.5 55.2±4.9 68.2±2.1
halfcheetah-medium-expert 44.0±1.6 75.6±25.7 86.7±5.3 90.7±4.3 90.0±5.6 94.0±0.4 43.3±1.5 33.0±6.6 74.5±4.9
Average Score 36.5±4.4 59.1±8.9 59.9±4.6 58.2±4.1 66.8±3.4 64.0±1.8 27.8±9.0 33.6±13.6 74.5±3.1

IV. EXPERIMENTS

We pose the following questions and provide affirmative
answers in our experiments: Q1) Is ORIS effective for RL
with offline data and an inaccurate simulator? Q2) When
the offline data is reduced, can ORIS make full use of the
simulator to supplement the data? Q3) Is ORIS robust to
the inaccuracy of the simulator? Q4) How do the different
components affect the performance? Q5) Is ORIS effective
in real-world robotic tasks?

A. D4RL Benchmarks and Baselines

We first evaluate our method on the locomotion tasks of
the widely used D4RL [24] dataset, i.e., halfcheetah, hop-
per and walker2d, and use the MuJoCo physics simulator
[21]. For each domain, we reconstruct three task simulation
environments with intentionally introduced dynamics gaps
upon the original locomotion tasks (which serve as the
real environments) by modifying the dynamics parameters
identical to H2O [22]: 1) Gravity: applying 2 times the
gravitational acceleration in the simulator; 2) Friction: using
0.3 times the friction coefficient; 3) Action Noise: adding a
random noise sampled from a standard normal distribution
N (0, 1) on every dimension of the action space.

We compare our method with the state-of-the-art online,
offline, and hybrid offline-and-online RL methods. For the
online RL, we compare with SAC [25], which is trained
in the modified simulator, and evaluate the policy in the
original environment. For the offline RL, we compare with
behavior cloning (BC), CQL [7], IQL [9], TD3+BC [6],
COMBO [8], SQL [12], which are trained on the fixed offline
dataset. The results of offline baselines are taken directly
from their corresponding papers. For the hybrid method,
we compare with H2O [22], which uses the same settings
as ours. During training, we collect simulated data from
the modified (inaccurate) simulator and evaluate the learned
policy on the original (accurate) simulator. The policy is
trained for 500K steps and evaluated over 10 episodes every
1000 steps. The results are over five random seeds.

B. Results on D4RL Benchmarks

To answer question Q1, we compare ORIS with all the
baselines on the D4RL dataset. In Table I, SAC, H2O, and
ORIS collect simulated data from the simulator with 2 times

the gravitational acceleration, i.e., the (g2.0) suffix. ORIS
outperforms the baselines in most of the tasks. Offline RL
performs well on medium-expert datasets that contain expert
trajectories. However, they perform poorly on other types of
datasets, which usually contain sub-optimal human demon-
strations. The results show that the performance of offline
RL is greatly affected by the quality of the dataset. H2O
behaves relatively well in halfcheetah but poorly in hopper
and walker2d tasks because the agent quickly falls down
and is unable to explore valuable data in the simulator when
starting from ρ0. In contrast, ORIS starts the rollout from the
states generated by GAN and achieves good performance,
which benefits the balance of exploitation of the offline data
and exploration of the inaccurate simulator.

In addition, we compare SAC and H2O under different
simulators with varying dynamics, and the results are shown
in Table II. It can be seen that ORIS consistently outperforms
H2O, which demonstrates that our method can take more
advantages than H2O from the inaccurate simulator. SAC
suffers from the dynamics gap in most cases but sometimes
outperforms ORIS on random datasets. This is because our
method trusts the offline dataset, which may be misleading
especially in the random cases.

C. Results on Small Dataset

Given a small offline dataset, we aim to assess if our method
can effectively leverage the simulator to supplement the
data. For the limited dataset, we split the hopper-medium-
replay-v2 dataset into trajectories and then randomly selected
subsets comprising 25% and 5% of these trajectories to create
two new limited datasets. We compare our method with
offline baselines and H2O given the limited datasets.

As shown in Fig. 3(a), the performances of almost all
offline RL methods drop dramatically as the amount of
data decreases, which shows that offline RL methods are
extremely sensitive to data quantity. H2O also performs
worse with less data, showing that the performance of H2O
also highly relies on the amount of offline data.

By leveraging the simulator, our method outperforms all
baselines on all limited datasets. Remarkably, the final scores
only dropped 8% when the amount of data decreased from
100% to 5%. This demonstrates that our method can effec-
tively use the simulator to compensate for the extremely little



TABLE II: Average normalized scores of SAC, H2O and our method for simulators with different unreal dynamics.

Unreal Dynamics Gravity Friction Action Noise
Task Name SAC H2O ORIS(Ours) SAC H2O ORIS(Ours) SAC H2O ORIS(Ours)
hopper-random 10.0±5.6 20.6±9.8 31.4±0.4 56.8±31.8 15.8±7.3 34.2±7.7 37.4±18.2 13.7±3.2 34.4±14.4
hopper-medium-replay 10.0±5.6 46.7±28.0 100.6±0.3 56.8±31.8 43.0±28.6 102.0±1.3 37.4±18.2 66.3±28.7 101.6±1.1
hopper-medium 10.0±5.6 21.6±17.7 99.8±0.8 56.8±31.8 24.9±9.7 101.1±0.8 37.4±18.2 75.2±16.5 98.5±3.2
hopper-medium-expert 10.0±5.6 25.2±24.4 110.1±1.5 56.8±31.8 15.7±14.6 106.2±7.7 37.4±18.2 31.4±20.9 109.1±3.9
walker2d-random 30.2±19.9 12.1±6.3 30.4±15.0 76.1±8.9 9.3±5.2 22.5±16.8 19.7±7.8 11.4±5.5 16.6±4.0
walker2d-medium-replay 30.2±19.9 39.2±25.9 91.5±0.5 76.1±8.9 75.6±12.7 93.5±9.9 19.7±7.8 36.4±18.6 95.3±3.6
walker2d-medium 30.2±19.9 34.4±15.2 86.2±5.3 76.1±8.9 30.4±9.3 89.6±9.9 19.7±7.8 30.4±6.9 88.0±5.7
walker2d-medium-expert 30.2±19.9 27.3±17.0 102.8±2.2 76.1±8.9 44.7±14.4 103.4±1.8 19.7±7.8 40.4±13.7 107.7±1.1
halfcheetah-random 43.3±1.5 35.2±1.4 39.2±1.7 41.8±3.7 42.7±15.6 53.0±4.2 41.2±3.8 9.3±0.4 20.5±0.3
halfcheetah-medium-replay 43.3±1.5 52.8±5.5 59.6±2.4 41.8±3.7 53.9±4.9 65.6±3.0 41.2±3.8 53.9±4.2 59.6±0.8
halfcheetah-medium 43.3±1.5 55.2±4.9 68.2±2.1 41.8±3.7 51.1±7.0 73.2±2.3 41.2±3.8 60.1±2.7 66.2±1.3
halfcheetah-medium-expert 43.3±1.5 33.0±6.6 74.5±4.9 41.8±3.7 18.4±6.2 86.8±3.5 41.2±3.8 33.7±8.6 76.0±7.8
Average Score 27.8±9.0 33.6±13.6 74.5±3.1 58.2±14.8 35.5±11.3 77.6±5.7 32.8±9.9 38.5±10.8 72.8±3.9

(a) Small Datasets (b) Simulator Inaccuracies

Fig. 3: Results on small datasets (25% and 5%) (left) and
different simulator inaccuracies (right).

data. We attribute this robust performance to the generator’s
ability to accurately fit the state distribution even with limited
offline datasets. Furthermore, the simulated data, collected
from restart distribution ρG, proves to be a more effective
supplement to the limited offline data.

D. Results on Robustness to Simulator Inaccuracy

In the subsection, we investigate the robustness of our
method with varying simulators. In complex applications, the
gap between the simulator and the real environment can be
substantial. Specifically, we compare our method with SAC
and H2O on the hopper-medium-replay-v2 while increasing
the simulator’s inaccuracy by applying a scaling factor of
Gravity Coefficient (GC) to the gravitational acceleration in
the simulator, i.e., GC = 3, 4, 5. Intuitively, the inaccuracy
of the simulator grows as GC increases.

As shown in Fig. 3(b), the performance of H2O drops
when GC increases, which is because H2O cannot fully
utilize the simulator with a large gap and accurately estimate
the value function of state-action pair from offline dataset
due to the poor coverage of state-action space. Without the
information of the real dynamics, SAC is severely affected
by the dynamics gap, and cannot repair the impact of the
gap. Our method is robust to the gap and the performance
only drops slightly when GC = 5. These results show that
our method can better utilize the inaccurate simulator and is
more robust to inaccurate factors.

Fig. 4: Ablation experiments for different modules.

E. Ablation Studies

In the subsection, we verify the effectiveness of the compo-
nents of our approach on hopper-medium-replay-v2 datasets.
We test 1) w/o restart: starting from the initial state s0 ∼ ρ0
to replace the distribution generated by the GAN generator
in our method and keep the rest of the modules unchanged;
2) H2O reweight w(s, a, s′) (Eq. 8 in [22]) for simulated
data instead of our discriminator-based re-weighting; 3) w/o
restart & H2O reweight: replace both start distribution and
re-weighting method, which is the same as H2O.

As shown in Fig. 4, the Original version of our method
achieves the best performance. The performance of the w/o
restart version drops by a significant margin (46.9%), which
shows that initiating from the states produced by the GAN
generator can effectively enhance performance. For the re-
weighting module, our approach outperforms H2O reweight
(with a drop of about 9.4%). These results highlight the
effectiveness of our re-weighting module.

F. Real-World Robotic Manipulation

We now test the performance of ORIS to a real-world robot,
which is typically more complex and involve many factors
contributing to the simulation gap (e.g., modeling error, cali-
bration error, control inaccuracy). As shown in Fig. 5, we use
a 7-DoF Kinova Gen3 robotic arm equipped with a Robotiq
gripper to do the Pick-and-place task. The state space is
represented by a 7-dimensional vector, including end-effector
position (3D), gripper opening state (1D), and position of
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Fig. 5: Pick-and-place in simulation (left) and real (right).

the block (3D). The block’s pose is estimated using Apritag
[28] from RGB images captured by the RealSense depth
camera D455. The action space is a 4-dimensional vector,
responsible for dictating the velocity of the end-effector (3D)
and the status of the gripper (1D, i.e., open or close). The
reward function is defined as r = −0.1 + 0.1 × I(d1 <
0.1) + 20.0 × I(d2 < 0.05), where I(·) is the indicator
function, d1 is the distance between the gripper and the
object and d2 is the distance between the object and the
goal. To collect an offline dataset, we employed a rule-based
policy created manually, which generated trajectories for
placing the object at various positions. For the simulator, we
use an off-the-shelf simulation environment: Metaworld [29],
based on Mujoco [21], without changing its robot model and
parameters. During evaluation, the object is initially placed
at 25 different positions in each episode.

The results are presented in Table III. Among offline
RL methods trained solely on the offline dataset, CQL and
TD3+BC both encounter severe OOD errors, rendering them
unable to pick up the block. While BC, IQL, and SQL can
reach and grasp the object, they struggled to accurately place
it in the correct position. This failure can be attributed to the
low-quality nature of the dataset, which includes numerous
task-agnostic trajectories. Among the methods that used the
inaccurate simulator, SAC was able to successfully complete
the task within the simulator. However, when transferring
the learned policy to the real world, it faced challenges in
both picking up and placing the object due to the dynamics
gap. H2O performed poorly as it did not explore sufficiently
within the simulator, hindering its ability to learn effective
policies. In contrast, ORIS can complete this challenging task
due to the proper utilization of both the limited offline data
and the inaccurate simulator, which shows the effectiveness
of our method in the real-world applications.

V. RELATED WORK

Offline RL aims to address the problem of learning effective
policies entirely from previously collected data using some
behavior policies, without further online interaction [2],
[3]. The main challenge is the extrapolation error [3], the
overestimation of the value function of OOD actions, which
is caused by the distribution shift between the current policy

TABLE III: Average return and success rate (SR) of all meth-
ods for the Pick-and-place task. The sub-tasks of “Reach”,
“Pick” and “Place” success when d1<0.1, the height of the
object zobj>0.05 and d2<0.05 respectively.

BC CQL IQL TD3+BC SQL SAC H2O ORIS
Average return -6.50 -13.58 -3.84 -14.99 -3.26 4.20 -14.56 18.18

SR (Reach) 98.7% 29.3% 100.0% 6.7% 98.7% 100.0% 22.7% 100.0%
SR (Pick) 61.3% 0.0% 92.0% 0.0% 97.3% 30.3% 0.0% 98.7%
SR (Place) 0.0% 0.0% 0.0% 0.0% 4.0% 27.6% 0.0% 98.7%

and the behavior policy [4], [7]. Several methods such as
BCQ [3], BEAR [4], BRAC [5], TD3+BC [6], and LAPO
[30] constrain the learned policy to the behavior policy
used to collect the dataset. Other methods such as CQL [7]
and COMBO [8] constrain the learned policy by making
conservative estimates of value functions of OOD actions.
Another type of methods such as AWR [10], One-step [11],
IQL [9] and SQL [12] does behavior cloning weighted
by advantage of the data. Offline RL methods are often
conservative and pessimistic, and their performance heavily
depends on the quality, size, and coverage of the state-action
space of the given offline dataset [16]–[18].

Another line of work does data augmentations to the
offline dataset. S4RL [31] adds noise to the states in the
offline dataset. Some model-based methods augment the
offline dataset by learning a reverse model [32] or bidi-
rectional models [33]. [34] propose mixup augmentation
in the Koopman subspace for offline RL. Similar to ours,
H2O [22] uses an inaccurate simulator to supplement the
dataset, which learns a pair of discriminators to reweight
the simulated data. However, H2O does not fully utilize the
simulator. Our method uses the same settings with H2O but
fully utilizes the simulator to augment the offline dataset
by starting from state-distribution [35], [36] and re-weight
simulated data according to the state-distribution.

Our work is also related to sim-to-real transfer [37].
Domain randomization randomizes the simulation to cover
the real distribution of real-world data, including visual
randomization [38]–[40] and dynamics randomization [41].
Some other works based on system identification [42], at-
tempt to build a precise simulator for sim-to-real transfer.
Unlike these works, ORIS does not require access to the
parameters of the simulator for adjustment and can directly
utilize the off-the-shelf simulator for real-world tasks.

VI. CONCLUSIONS

In this paper, we proposed a method ORIS to enhance
the performance of offline RL by utilizing an inaccurate
simulator. Firstly, we train a GAN to fit the state distri-
bution of the offline dataset. Then we use the generator to
produce starting states for rollouts in the simulator with a
hybrid behavior policy, aiming to balance the exploration-
exploitation dilemma of collecting useful data. Furthermore,
we employ the discriminator to re-weight the simulated data
for more precise Q value estimation. Our experiments on
the D4RL benchmarks and the real-world task demonstrate
the effectiveness of our approach. In the future, we plan to
extend our method to tackle more challenging robotics tasks.
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