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ClickAdapter: Integrating Details into Interactive
Segmentation Model with Adapter

Shanghong Li1, Yongquan Chen1∗, Long Xu1∗, Jun Luo2, Rui Huang1, Feng Wu3, Yingliang Miao4

Abstract—Click-based interactive segmentation is the most
concise and widely used data labeling method. While exist-
ing interactive segmentation methods excel in handling simple
targets, they encounter challenges in obtaining high-quality
masks from some complex scenes, even with a large number
of clicks. Also, the cost of retraining the model from scratch
for special scenarios is unacceptably high. To address these
issues, we propose ClickAdapter, a simple yet powerful interactive
segmentation model adapter without the need for no pre-training.
Through introducing a small number of additional parameters
and computations, the adapter module effectively enhanced the
ability of interactive segmentation models to obtain high-quality
prediction with limited clicks. Specifically, we incorporate a detail
extractor that aims to extract spatial correlations and local detail
features of images. These fine-grained data are then integrated
into a model with our adapter to generate segmentation masks
with sharp and precise edges. During the training process, only
the parameters of our adapter are learnable, thereby reducing
the training cost. Features in special scenarios can also be
infused more efficiently. To verify the efficiency and performance
advantages of the proposed method, a series of experiments on
a wide range of benchmarks were conducted, demonstrating
that the proposed algorithm achieved cutting-edge performance
compared to current state-of-the-art (SOTA) methods.

Index Terms—Human-computer interaction, interactive seg-
mentation, adapter, spatial correlations, training cost.

I. INTRODUCTION

INTERACTIVE segmentation aims to utilize limited user
interaction information to achieve the segmentation of tar-

get instances in images. This method provides an efficient way
to obtain large-scale annotated data, making it an important
task in human computer interaction and computer vision. The
current paper focuses on interactive segmentation based on
click points, where foreground and background are defined
by simple positive and negative clicks, respectively. After
each click, a segmentation prediction of the target instance
is returned. The objective is to achieve higher target accuracy
with fewer parameters and click iterations.

Most early research on click-based interactive segmentation
methods focused on developing more effective segmentation
backbone networks or exploring novel refinement modules,
FocalClick [1], EdgeFlow [2], f-BRS [3], etc., to obtain more
refined segmentation results. SimpleClick [4] first introduced
Vision Transformers (ViT) [5] into interactive segmentation
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Fig. 1: Comparison of predicted masks between SimpleClick
and our ClickAdapter using the same several click points on
the object as input prompts. Our method yields significantly
more detailed results with highly accurate boundaries.

approaches and surpassed those relying on Convolutional
Neural Networks in performance, thereby developing rapidly
and achieving SOTA results. Recently, the Segment Anything
Model (SAM) [6] based on pre-trained MAE [7] attracted
attention and reported its performance competiable with previ-
ous SOTA algorithms such as FocalClick [1]. We applied these
methods in practical annotation processes and conducted ex-
tensive experiments. In many complex scenarios, we identified
two key challenges with existing algorithms. First, existing
methods still struggle to meet the requirements of high-
precision mask annotation tasks, as shown in Figure 1. Specif-
ically, 1) the segmentation edges of objects with fine structures
are not accurately delineated and often require extensive
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manual corrections to meet annotation needs, and 2) for high-
precision input images, the models are prone to noticeable
prediction errors, which requires more clicks for corrections.
Second, existing algorithms increasingly adopt large models
with more parameters and train them on large-scale datasets to
enhance the models’ generalization capabilities, which poses
challenges in model training. In some complex scenes, only
medium-sized or small datasets are available for training, and
due to the large parameter volume of ViT models, training
from scratch is computationally expensive and may result in
the loss of knowledge learned from large-scale datasets.

To address the aforementioned issues, we propose an addi-
tional module with a detail extractor to meet the demand for
high-resolution segmentation capability in high-precision mask
annotation tasks. This is a small-scale network that does not
require pre-training and can be attached to the Transformer-
structured backbone. Without adjustments of backbone net-
works, the adapter module can effectively adapting the model
to complex application scenarios of interactive segmentation
and reducing training costs.

Specifically, the detail extractor consists of two main com-
ponents: 1) a spatial prior module based on deformable con-
volutions and 2) an injector module based on cross-attention
layers. Recent studies [8], [9] have shown that convolutional
neural networks can better assist ViT in capturing local spatial
information; this is because the ViT backbone network treats
the image as a series of patches and extensively models the
interaction between patches. However, it struggles to perceive
the intrinsic structural information within each patch and
the spatial relationships among patches. On the other hand,
convolutional neural networks naturally excel at modeling
pixel-level local relationships and preserving spatial positional
connections among pixels. The spatial prior module based on
deformable convolutions captures local semantic information
and spatial prior features from the input image, compensating
for the missing local details in the predicted mask. Addi-
tionally, it is generally believed that early transformer layers
capture lower-level features and have not established suffi-
ciently rich global information [10]. Therefore, we employ an
injector module based on Two-way Attention layers to inject
spatial features into the shallow features obtained from the
Transformer-structured backbone network, aiming to capture
fine-grained features of the image.

Throughout the training process, only the parameters of
the adapter are trainable, while all parameters of the back-
bone network remain fixed. Our proposed adapter not only
demonstrates a notable reduction in the number of trainable
parameters and associated training costs for the model but also
ensures the retention of performance achieved by the backbone
network on large-scale datasets through fine-tuning of the
adapter parameters. To substantiate the effectiveness of the
adapter structure, we conducted comprehensive quantitative
and qualitative experiments, evaluating the performance of the
proposed method across six widely recognized interactive seg-
mentation benchmarks, utilizing backbone networks of varying
scales. Moreover, we conducted a comparative analysis with
state-of-the-art interactive annotation methods, alongside se-
lected fine-tuning methods, to assess both performance and

training efficiency.
In conclusion, our contributions can be summarized as

follows:
• We introduced an adapter for existing interactive seg-

mentation models, designed to undergo fine-tuning on
the pre-trained backbone network of the Transformer
architecture. This approach not only attains competitive
performance in novel and complex scenarios but also
markedly diminishes training costs, given the adapter’s
limited parameter count.

• We formulated the architecture of the adapter, incorporat-
ing a detail extractor and an injector with the introduction
of a minimal number of parameters. Our approach adeptly
amalgamates local spatial features of images with shallow
semantic features, empowering the model to execute
segmentation tasks in high-resolution scenes.

• Our proposed method has demonstrated competitive per-
formance across multiple benchmarks, manifesting an av-
erage performance improvement of 11% with the addition
of merely 15% learnable parameters.

II. RELATED WORK

A. Interactive segmentation

Before the widespread application of deep learning in the
field of computer vision, many works [11]–[14] were based
on traditional optimization processes to design interactive
segmentation methods. In recent years, due to its outstanding
performance, deep learning has quickly surpassed traditional
methods and become the mainstream research direction. Xu
et al. [15] was the first to introduce deep learning into in-
teractive segmentation, defining training strategies, evaluation
protocols, modeling and generation methods for click points.
Subsequent works were built upon this foundation with an
investigation into more effective backbone networks and finer
optimization modules. Regarding the research on backbone
networks and training strategies: Lin et al. [16] emphasized
the significance of the first click. Jang et al. [17] initially
highlighted the iterative nature of interactive segmentation and
optimized segmentation masks through backpropagation based
on previously generated masks. Building on this foundation,
Forte et al. [18]improved the network structure and for the
first time propagated previously predicted masks as inputs
for learning within the network. Sofiiuk et al. [19] further
enhanced the network structure and refined the previously
generated masks to improve prediction accuracy. Liu et al.
[4] introduced ViT into the interactive segmentation task and
achieved promising performance. In terms of optimization
modules, Hao et al. [2] proposed an improved method based
on target contour masks. Instead of using a global mask
as prior information, an additional flow was used to predict
the target’s contour mask. However, due to the heterogeneity
between contour features and original image features, an extra
module was required to align the contour with the target,
resulting in increased complexity and inference time. Zhang
et al. [20] presented a contour-refinement network structure to
handle previously predicted masks. It designed two networks
to respectively predict the target’s contour and optimize the
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Fig. 2: Overview of our method. Our method takes the embedding image and user clicks map combined with the previous
segmentation mask as input. Our method consists of three main modules: (a) a Plain ViT backbone that maintains single-
scale feature maps throughout; (b) a detail extractor that extracts the spatial correlation and locally uses a Plain ViT model
that maintains four-scale features throughout as our backbone; and (c) a transformer decoder that combines multiple different
features. The parameters of the Plain ViT backbone network was frozen during the training process.

scaled target mask, thereby improving prediction accuracy.
Chen et al. [1] proposed a method to optimize locally pre-
dicted masks through an optimization layer. These methods
represented click points using click maps, which limited the
model’s understanding of click information. Additionally, they
required additional networks to process previously predicted
results, increasing model complexity and inference time. Chen
et al. [3] investigated the encoding method for click points and
proposed a fusion method that used convolutional layers to
merge the segmentation network’s predicted results with click
points, optimizing the final prediction mask.

B. Vision Transformer and Adapter

In recent years, the transformer architecture has asserted
its dominance in the realms of natural language processing
(NLP) and speech recognition, primarily due to its outstanding
attention mechanism. Dosovitskiy et al. [5] introduced this
remarkable structure into the field of computer vision, where
it outperformed traditional CNN models, particularly in image
classification tasks. Subsequent advancements by PVT [21]
and Swin [22] further incorporated a pyramid structure into
ViT, resulting in superior performance attributed to its multi-
level design tailored for handling image features. Segformer
[23] adopts a straightforward and lightweight segmented back-
bone network through the hierarchical design of the Trans-
former structure. Nevertheless, recent studies, including those
on BEiT [24], MAE [7], and PlainViT [25], have illustrated
that the ViT structure, without the necessity of a multi-level
design, still harbors substantial potential. Furthermore, this
structure demonstrates increased flexibility and applicability,
particularly in scenarios involving pre-training with multi-
modal and masked data.

The concept of adapters found its initial widespread applica-
tion in the field of Natural Language Processing (NLP). Stick-
land et al. [26] and Houlsby et al. [27] introduced novel mod-

ules into transformers for task-specific fine-tuning, allowing
large pre-trained models to rapidly adapt to new downstream
tasks. In the realm of computer vision, adapter structures
have been proposed for progressive learning [28] and domain
adaptation [29]. With the emergence of CLIP [30], numerous
studies have explored the use of adapters to transfer pre-trained
knowledge to zero-shot tasks in downstream applications.
Recently, Li et al. [25] investigated adapters based on the Plain
ViT backbone, augmenting it with additional up-sampling and
down-sampling modules to tailor it for object detection tasks.
Similarly, Chen et al. [9] designed an additional adapter based
on the PlainViT backbone to adapt it for dense prediction
tasks, yielding remarkable results.

Furthermore, numerous studies have delved into the char-
acteristics, merits, and drawbacks of the Vision Transformer
(ViT) architecture. Yuan et al. [31] highlighted the strengths
of the Transformer in establishing long-range dependencies,
juxtaposed with the advantages of Convolutional Neural Net-
works (CNNs) in extracting low-level features and enhancing
locality. Chen et al. [9] emphasized that CNNs can leverage
spatial prior features to compensate for the limitations of the
PlainViT structure in dense prediction tasks. In a separate
study, Wu et al. [8] examined the features propagated through
different layers in the ViT structure, noting that early features
tend to be lower-level, while deep features generally embody
more abstract semantic features.

III. METHOD

In this chapter, we first introduce the overall structure
of the proposed adapter. Then, we proceed to discuss the
structure of the detail extractor within the adapter, which is
designed to capture spatial features of target instances and
local edge features. Finally, we discuss the design of the
decoder, which aims to fuse detail features with minimal
parameters to enhance segmentation performance.
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Fig. 3: Schematic diagram of the detail extractor. The detail extractor consists of three main modules: (a) a spatial prior module
that extracts image spatial features using deformable convolutions, (b) an injector module that fuses shallow features from the
backbone network with spatial features, and (c) a decompression module that obtains high-quality features.

A. Overall Structure
As shown in Figure 2, our model can be divided into two

parts. The first part is the backbone network of Plain ViT,
which consists of two patch embedding layers, N transformer
encoder blocks, and a simple feature pyramid network. The
second part is the proposed adapter, which includes a detail
extractor module and a transformer decoder module.

Based on the analysis of computational cost and perfor-
mance of various backbone networks in interactive image
segmentation tasks in [4], we chose the plain non-hierarchical
Plain ViT-Base [32] as the backbone of our segmentation
model. The input of the network, denoted as x, consists of
the input image xin ∈ RB×3×H×W , the click map xc ∈
RB×2×H×W , and the predicted result of the previous click
xt−1
m ∈ RB×1×H×W . The two channels in xc represent the

positions of positive and negative clicks, respectively. Here,
B represents the batch size, and t represents the t-th click. xp

represents the position distribution of the target object, while
xm represents the final segmentation mask.

Specifically, the input image is first divided into a series
of non-overlapping patches of size 16 × 16. Each patch’s
feature is linearly transformed using the patch embedding layer
to map it into a feature vector of dimension C, forming a
sequence of length L. The sequence is then fed into N stacked
transformer blocks, where each block consists of a multi-head
self-attention layer. The output of the feature vectors after the
nth layer is denoted as Fn

V iT ∈ RB×C×L. The feature vector
after the last layer is denoted as FN

V iT , which contains the
strongest global features of the image. We apply fN to obtain
multi-scale features. We construct a simple feature pyramid
using a set of convolutions and transposed convolutions. By
setting different convolution strides, we obtain feature maps of
sizes 1

4 ,
1
8 ,

1
16 ,

1
32 compared to the original image size. They

are respectively denoted as FN
1
4

,FN
1
8

,FN
1
16

,FN
1
32

.

B. Detail Extractor
To obtain more accurate segmentation results, rich global

semantic context information and local edge detail information
are needed. To achieve this, we introduce a detail extractor to
obtain additional spatial prior information and detailed edge
information. Figure 3 illustrates the specific structure of the
proposed detail extractor.

First, we introduce a spatial prior module. Given the normal-
ized input image, xin, we employ deformable convolutions to
capture local pixel correlations and spatial contextual relation-
ships. The spatial prior module consists of three components:
1) the backbone layer, 2) the convolutional filtering layer,
and 3) the fully connected layer. For the backbone layer, we
adopt a convolutional backbone structure based on the stan-
dard ResNet, which includes three deformable convolutional
layers and one max-pooling layer to capture spatial features
of the image. Batch normalization (BatchNorm) and ReLU
layers are applied between the convolutional layers to enhance
generalization capability. The output of the backbone layer,
denoted as Fstm ∈ RB×hd

4 ×HW
42 , reduces the spatial scale of

the image and maps the channels to the hidden dimension hd
4 .

Next, we use cascaded deformable convolutions with a stride
of 2 and a 3×3 kernel to form the convolutional filtering layer,
which doubles the number of channels and reduces the size
of the feature maps. The output of the convolutional filtering
layer is Fcf ∈ RB×hd×HW

162 . Finally, we employ deformable
convolutions with 1 × 1 kernels as the fully connected layer
to project the feature maps to the feature dimension C of the
Plain ViT, obtaining the output of the spatial prior module,
Fspm ∈ RB×C×HW

162 .
Next, we propose an injector module to integrate the output

of the spatial prior module with the output of the Plain ViT
backbone network. Specifically, based on cross-attention, we
fuse the spatial prior features, Fspm, with the features from
the early layers of the Plain ViT backbone network, Fn

V iT .
Research on ViT [5] has shown that later blocks in the back-
bone network have longer attention distances, whereas earlier
blocks are more localized and contain lower-level semantic
detail features. Based on this characteristic, we extract the
output of the early attention block in the Plain ViT backbone
network as the feature. Specifically, for the Plain ViT backbone
based on ViT-Base, we select the output of the third block out
of a total of 12 blocks and denote it as Fearly

V iT .
We use Fearly

V iT as the query, Fspm as the key and value,
and apply cross-attention to incorporate spatial features into
the early-stage ViT features, as shown in equation (1) below:

F̂early
V iT = Fearly

V iT + γA(norm(Fearly
V iT ), norm(Fspm)) (1)

where A(·) represents the cross-attention layer, the input at
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position one serves as the query, and the input at position two
serves as the key and value. norm(·) denotes the LayerNorm
layer. γ ∈ RC is a learnable parameter used to associate the
output of the attention layer in the residual connection. It is
initialized to zero, and because the output of the attention layer
is non-zero, during the first iteration of gradient descent, the
parameter γ will be optimized to a non-zero value. In this way,
the output of the spatial prior module and the ViT backbone
network can be gradually balanced in a learned manner.

After incorporating spatial features into the early-stage ViT
features, we apply a module consisting of a feed-forward
network (FFN) and a cross-attention layer to extract high
precision features. This process is illustrated by equations (2)
and (3):

F̂spm = Fspm + FFN(norm(Fspm) (2)

F̂hq = F̂spm +A(norm(Fspm), norm(F̂early
V iT )) (3)

where the output of the feed-forward network, F̂spm, serves
as the query for the cross-attention layer, and the output of
the previous layer, F̂early

V iT , serves as the key and value for the
cross-attention layer.

Finally, we designed a feature compression module that
utilizes two transpose convolutional layers to compress the
output, F̂hq, of the cross-attention layer. This compression
reduces the dimensionality while increasing the size of the fea-
ture maps, resulting in the final high-quality feature, FV iT hq .

C. Adapter Design

Training costs are high due to the large number of network
parameters in the ViT backbone network. To train more
efficiently, we propose the construction of an efficient adapter
for the ViT backbone network. In this section, we introduce
the specific structure of the adapter designed for Plain ViT,
and its overall architecture is illustrated in Figure 4.

Fig. 4: Schematic diagram of the adapter module, which fuses
high-quality features with the feature output of the backbone
network and decodes the features to obtain the output mask.

First, we introduce an efficient token learning approach
in the adapter to enhance its ability of learning high-quality
prediction masks. As shown in the Figure 4, this token under-
goes decoding through two decoder layers. In each decoder
layer, the token is first updated through self-attention; features
are then updated through a bidirectional cross-attention layer
between the token and the image, and vice versa. After passing
through the decoder layers, the output token is associated with
the global contextual features of the image. Finally, a three-
layer MLP is added, and the updated output token can predict
dynamic MLP weights, generating dynamic convolutional ker-
nels.

Second, we introduce a Dense Input Embedding module in
the adapter. This module allows the previous predicted mask to
be input into the adapter, enhancing the stability of the model’s
prediction results and preventing significant changes in the
predicted mask during consecutive clicks. The module consists
of four 2D convolutional layers, along with corresponding
LayerNorm layers and activation functions, which reduce the
size of the mask to 1

16 of its original size and map it to the
feature dimension C. This dense input is then concatenated
with the image feature output of the Plain ViT network and
fed into the transformer decoder layers for decoding.

Finally, we introduce a Multi-Scale Feature Fusion module
in the adapter, which takes the multi-scale features obtained
from a simple feature pyramid network in the backbone
network and fuses them before inputting them into the adapter.
According to the research on Plain ViT [32], this simple
feature pyramid structure effectively extracts visually specific
inductive biases from the backbone network. In the adapter,
we design a Multi-Scale Feature Fusion layer that uses de-
convolution layers with different strides to compress features
of different scales, thereby reducing the feature dimension to
C
4 and unifying the feature size to 1

4 of the input image size.
Finally, the compressed multi-scale features are concatenated
along the feature dimension and passed through a fully con-
nected layer to output features with a dimension of C

8 .
During the training process, we fix the model parameters of

the pre-trained Plain ViT model and allow only the proposed
adapter and detail extractor to be learned. Thus, the learnable
parameters include the convolutional layers and cross-attention
layers in the detail extractor, the output token and its associated
three-layer MLP in the adapter, the downsampling convolu-
tional layer in the Dense Input Embedding module, and the
two decoder layers. During inference, we use the predictions
from the adapter as high-quality prediction results. To correct
the output prediction mask, we compute a logarithmic sum
of the output predictions from Plain ViT’s ordinary semantic
segmentation head and our high-quality mask predictions from
the adapter. The corrected result is then upsampled to obtain
the final output.

IV. EXPERIMENTS

This chapter initiates with an introduction to the founda-
tional configuration of the proposed adapter and backbone
network, accompanied by a delineation of the interactive
training and validation strategy. Subsequent sections include
a meticulous accuracy comparison between our proposed
algorithm and existing state-of-the-art (SOTA) algorithms,
utilizing established evaluation datasets. Noteworthy findings
underscore that our proposed adapter markedly improves seg-
mentation quality, concurrently preserving the expeditious and
cost-effective nature of the training process, in contrast to
the comprehensive network’s performance across both training
and inference phases. Finally, ablation experiments were con-
ducted to rigorously validate the efficacy of each submodule
of the proposed method.
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TABLE I: Evaluation results of methods based on small-scale backbone networks on GrabCut [14], Berkeley [33], DAVIS
[34], SBD [35], COCO MVal [36] and PascalVOC [37]. ’NoC 85/90’ denotes the average Number of Clicks required to get an
IoU of 85/90%. The first and the second parts display the results of all methods trained on SBD [35] and COCO [36]+LVIS
[38], respectively, and the last part presents the results trained on HQSeg-44K [39]. The symbol ’*’ signifies direct citation
of the experimental results from the corresponding papers. Bold data indicates the best performance on the current evaluation
benchmark.

GrabCut Berkeley SBD DAVIS COCO_MVal PascalVOC
Method NoC 90 NoC 90 NoC 85 NoC 90 NoC 85 NoC 90 NoC 85 NoC 90 NoC 85 NoC 90

*f-BRS-B-hrnet32 [3] 2.16 3.69 4.31 7.08 5.54 7.62 3.82 5.44 - -
*RITM-hrnet18s [19] 2.04 3.22 3.39 5.43 4.94 6.71 - 4.39 2.51 -

*FocalClick-segformer-B0-S2 [1] 1.90 3.14 4.34 6.51 5.02 7.06 - - - -
Ours-segformer-B0 1.44 1.87 4.36 6.68 3.99 5.38 3.00 3.54 2.78 3.87
Ours-segformer-B3 1.42 1.57 4.79 5.97 2.98 4.33 2.59 3.03 2.50 3.50

*f-BRS-B-hrnet32 [3] 1.74 2.61 4.29 7.20 4.94 6.36 2.54 3.43 - -
*RITM-hrnet18s [19] 1.68 2.60 4.04 6.48 4.70 5.98 - 3.33 2.57 -
*RITM-hrnet32 [19] 1.56 2.10 3.59 5.71 4.11 5.34 - 2.97 2.57 -

*EdgeFlow-hrnet18 [2] 1.72 2.40 - 4.54 5.77 - - 2.50 -
FocalClick-segformer-B0-S2 [1] 1.66 2.27 4.56 6.86 4.04 5.49 3.23 4.37 3.55 4.24
FocalClick-segformer-B3-S2 [1] 1.50 1.92 3.53 5.59 3.61 4.90 3.45 3.33 2.53 2.97

Ours-segformer-B0 1.54 2.17 4.29 6.54 3.97 5.22 2.75 3.66 2.93 3.44
Ours-segformer-B3 1.46 1.86 3.73 5.85 2.99 4.37 2.47 3.37 2.53 2.94
Ours-segformer-B0 1.50 1.87 4.45 6.71 3.65 5.07 2.87 3.87 3.12 3.63
Ours-segformer-B3 1.40 1.57 3.97 6.16 2.91 4.48 2.55 3.47 2.72 3.14

TABLE II: Evaluation results of methods based on large-scale backbone networks on GrabCut [14], Berkeley [33], DAVIS
[34], SBD [35], COCO MVal [36] and PascalVOC [37]. ’NoC 85/90’ denotes the average Number of Clicks required to get an
IoU of 85/90%. The first and the second parts display the results of all methods trained on SBD [35] and COCO [36]+LVIS
[38], respectively, and the last part presents the results trained on HQSeg-44K [39]. Bold data indicates the best performance
on the current evaluation benchmark. All methods adopt the same training strategy, that is, using the SimpleClick pre-trained
backbone network and freezing the backbone network for training.

GrabCut Berkeley SBD DAVIS COCO_MVal PascalVOC
Method NoC 90 NoC 90 NoC 85 NoC 90 NoC 85 NoC 90 NoC 85 NoC 90 NoC 85 NoC 90

SimpleClick-ViT-B [4] 1.54 2.46 3.28 5.24 4.10 5.48 - - 2.38 2.81
SimpleClick-ViT-L [4] 1.46 2.33 2.69 4.46 4.12 5.39 - - 1.95 2.30

Ours-ViT-B 1.42 1.89 3.26 5.27 4.03 5.28 2.25 3.18 2.16 2.52
Ours-ViT-L 1.38 1.77 2.78 4.53 3.88 5.08 2.03 2.83 2.12 2.75

SimpleClick-ViT-B [4] 1.48 1.97 3.43 5.62 3.66 5.06 - - 2.06 2.38
SimpleClick-ViT-L [4] 1.40 1.89 2.95 4.89 3.26 4.81 - - 1.72 1.96
CRFasRNN-ViT-L [40] 1.48 1.83 3.27 5.32 3.47 4.83 2.14 2.96 2.09 2.41

PAMR-ViT-L [41] 1.70 3.08 5.22 6.75 4.87 6.12 2.91 6.45 2.29 2.94
FocalClick-ViT-L [1] 1.60 2.04 4.06 6.64 3.72 5.39 2.52 2.97 2.69 3.67

Ours-ViT-B 1.42 1.74 3.18 5.20 3.48 4.86 2.13 2.91 2.00 2.31
Ours-ViT-L 1.38 1.53 2.77 4.62 3.27 4.72 1.97 2.73 1.69 1.93
SAM-H [6] 1.62 2.25 5.98 9.63 4.88 6.21 3.46 5.60 2.75 3.33

HQ-SAM-H [39] 1.84 2.00 6.23 9.66 4.15 5.58 3.81 5.94 2.50 2.93
Ours-ViT-B 1.38 1.56 3.66 5.58 3.52 4.86 2.10 2.91 2.02 2.32
Ours-ViT-L 1.30 1.47 3.42 5.43 2.54 4.14 2.48 3.19 2.17 2.44

A. Experimental Configuration

Model selection. Research findings from SimpleClick [4]
reveal that PlainViT achieves superior accuracy compared
to other hierarchical backbone networks in interactive image
segmentation tasks. Consequently, this paper opts for the
PlainViT series as the backbone network for our model and
conducts comparisons with alternative methods employing
similar PlainViT backbone networks. Additionally, to ensure
a fair evaluation against FocalClick [1] and other methods
utilizing small-scale segmentation networks (e.g., hrNet [42],
Segformer [23]), our proposed method is applied to the Seg-
former series backbone network during training.
Training protocol. To generate training data, we randomly

cropped images into a size of 448× 448, considering that the
precise dependencies between different click patches need to
be calculated for click attention. All training was conducted
in an end-to-end manner.

Regarding the simulation strategy for click points, we
employed the iterative learning strategy from RITM [3] and
sample positive and negative clicks using the training sample
generation strategy proposed from [15]. The maximum number
of click points during training was set to 24, with a decay
probability of 0.8.

Data augmentation was performed during training using
random flipping and random resizing. We used the AdamW
optimizer with β1 = 0.9 and β1 = 0.999. Each epoch consists
of 30,000 training samples.
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It is worth noting that our method that fixed all parameters
of the backbone network during training, significantly reduced
the number of learnable parameters, making the training
process fast and affordable. Compared to other algorithms
that use 230 epochs, our method only needed 60 epochs. The
initial learning rate was set to 5×10−6 and was subsequently
reduced by a factor of 10 at epochs 50 and 55. Our model was
trained on 4 RTX2080Ti GPUs and completed the process in
approximately 8 hours.
Evaluation strategy. To ensure equitable comparisons, we
adhered to the performance evaluation strategy established in
[3], [15]–[17], [19], [43]. During testing, each click point
was sampled from the center of the region exhibiting the
highest prediction error in the preceding results. This approach
guarantees that the predicted results either attain the desired
Intersection over Union (IoU) with the ground truth or reach
the maximum number of clicks.

The performance of the algorithm was evaluated using NoC
IoU (Number of Clicks), representing the average number of
clicks needed to achieve the target IoU. We set the maximum
number of clicks to 20, and surpassing this limit indicates a
failure in the task at hand.

B. Comparison with State-of-the-Art
Performance on existing benchmarks. To facilitate a more
comprehensive and equitable comparison, we conducted train-
ing on our method using both the Segformer series with
smaller parameters and the PlainViT series with larger pa-
rameters. Subsequently, we compared the performance against
the current SOTA algorithm employing backbone networks of
varying sizes on existing benchmarks. The outcomes of these
comparisons are presented in Table I and Table II, respectively.
Early classical methods such as GraphCut [44] and Geodesic
Star Convexity [12] were excluded from the comparison due
to their performance disadvantages.

Training was conducted on three datasets. SBD [35] and
COCO [36]+LVIS [38] serve as the current training datasets
for most SOTA methods, ensuring a more comprehensive and
equitable basis for comparison. HQSeg44K [39] is a high-
precision segmentation dataset recently proposed and utilized
in HQ-SAM. Its inclusion allows us to explore the upper
limits of our method. Validation was conducted across six test
benchmarks: GrabCut [14], Berkeley [33], DAVIS [34], SBD
[35], PascalVOC [37], and COCO MVal [36]. The inclusion
of these diverse datasets in our training and validating regimen
is deliberate, aiming to ensure the stability and robustness of
the advantages offered by our method.

All the SOTA algorithms included in Table I have openly
learned all the model parameters, encompassing both the
backbone network and additional modules. The comparison in
Table II followed the training methodology outlined in Section
III-C. In this approach, only the parameters of our adapter
module or refine module, such as CRFasRNN [40], PAMR
[41], FocalClick [1], were made available for learning, while
the parameters of the backbone network were loaded from the
pre-trained PlainViT by SimpleClick [4] and kept fixed.

Analyzing the data presented in Table I and Table II,
it becomes evident that, under the same training set, our

TABLE III: Comparison of computational metrics: model
parameters, FLOPs, and speed (measured by seconds per
click). Each method is marked with the type of backbone
network used and the input image size. *Since the original
ViT-Adapter is not available for interactive segmentation, we
modified the input embedding module and segmentation head
to as same as ours for fair comparison.

Model Type Params(MB) FLOPs(G) Speed/ms
RITM-hrnet32-400 30.95 41.56 150

FocalClick-B0-S2-256 3.72 1.77 23
FocalClick-B3-S2-256 45.66 12.37 90
FocalClick-ViT-L-448 322.19 266.78 303

SimpleClick-ViT-B-448 84.89 96.46 162
SimpleClick-ViT-L-448 322.18 266.44 300
SimpleClick-ViT-H-448 659.39 700.96 585

*ViT-Adapter-B-448 142.57 151.51 -
*ViT-Adapter-L-448 405.22 397.03 -

SAM-H-1024 637.23 2830.34 665
HQ-SAM-H-1024 635.63 2802.69 658

Ours-B0-448 7.06 9.54 31
Ours-B3-448 58.77 49.95 103

Ours-ViT-B-448 128.65 148.74 195
Ours-ViT-L-448 378.30 390.19 310

method consistently achieved the highest or second-highest
performance across all mainstream benchmark tests. On the
Segformer series backbone network with fewer parameters, our
method outperforms FocalClick, which also employs smaller
parameters, across two distinct network settings: B0 and B3.
When utilizing the larger scale of the backbone network,
our method surpassed the current state-of-the-art algorithm
SimpleClick by approximately 17% on the Berkeley test set,
approximately 6% on the SBD and PascalVOC test sets, ap-
proximately 3% on the DAVIS dataset, and maintained compa-
rable performance on the GrabCut dataset. Following training
on the latest HQSeg-44K dataset, our algorithm demonstrated
performance improvements of approximately 7% to 9% across
multiple datasets.
Computation analysis. Table III provides a comprehensive
comparative analysis of various model types, considering cru-
cial factors such as the number of model parameters, FLOPs,
and inference speed on the CPU. Given that prior research
predominantly employed small-scale backbone models, we
selected Segformer as a representative for comparison. In
recent years, the landscape has witnessed the rapid devel-
opment of large models, with many studies adopting sizes
exceeding 300MB and input dimensions ranging from 400 to
600 pixels. SAM utilizes an input size of 1024, trading off
some efficiency for superior segmentation results. Our method
adopts PlainViT as the backbone with a default input size of
448 × 448, striking a balance between inference speed and
memory consumption in practical annotation processes while
achieving more accurate segmentation results. In comparison
to SimpleClick, which also utilizes the PlainViT backbone
network, our method based on the ViT-Base backbone achieves
performance comparable to SimpleClick based on the ViT-
Large backbone, albeit with approximately 20% parameter
overhead and some compromises in inference speed.
Comparison with SAM on Point-based interactive Segmen-
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(a) Results on COIFT [45] (b) Results on DIS [46]

(c) Results on DAVIS [34]

Fig. 5: Comparison of mbIoU under a varying number of
positive and negative clicks with SAM and HQ-SAM. We use
the evaluation strategy proposed in DIO [15] on the COIFT
[45], DIS val set [46] and DAVIS [34] datasets. The abscissa
represents the number of positive and negative clicks, and the
ordinate represents the mbIoU split under the current click.

TABLE IV: Efficiency comparison with fine-tuning meth-
ods. ’B’ and ’L’ denote using pre-trained PlainViT-Base and
PlainViT-Large as the backbone, respectively. The symbol *
indicates a direct citation of the experimental results in the
corresponding papers.

Params(M) Train Time Memory mBIoU
Total Learnable s/iter M 10 clicks

SAM-B-1024 358.32 358.32 - *5100 78.1
HQSAM-B-1024 362.10 4.12 - *5100 82.5
Finetune-B-448 96.72 96.72 1.83 5733 84.6
LoRA-B-448 114.15 0.56 1.29 4100 78.9
Ours-B-448 128.65 32.95 1.32 4367 87.6

Finetune-L-448 322.42 322.42 2.60 12039 86.1
LoRA-L-448 382.58 1.50 1.87 7516 86.3
Ours-L-448 378.30 57.12 1.62 7279 90.7

tation. To assess the segmentation performance of our method
compared to the SOTA interactive annotation methods SAM
[6] and HQ-SAM [39] based on click point guidance, we
conducted accuracy comparisons on the test sets of COIFT
[45] and DIS [46] under an equivalent number of click point
inputs. To ensure a fairer comparison, we utilized their official
predictors and weights with limited modifications, adjusting
only the input format to align with the requirements of the
SAM Predictor. For a more precise evaluation, we adopted the
boundary metric mbIoU, as used in HQ-SAM [39], employing
a stricter evaluation with an inflation ratio of 0.02. Notably,
SAM and HQ-SAM used an image input size of 1024×1024,
whereas our method operated with an input size of 448×448,
placing our approach at a disadvantage in the comparison.

The test results, illustrated in Figure 5(a), Figure 5(b), and
Figure 5(c), consistently demonstrate the superior performance
of our method compared to SAM and HQ-SAM across various
click numbers in click-based interactive segmentation tasks.

TABLE V: Comparison of training results on partial training
set. The subsets include 500, 1000, 2000 and all samples
randomly selected from the HQSeg44K [39] training set,
respectively. All experimental methods are based on the pre-
trained SimpleClick-B backbone network. We select two high-
quality data sets, DAVIS [34] and COIFT [45], and use mbIoU
NoC as the test benchmark.

Method & Samples COIFT DAVIS
bNoC85 bNoC90 bNoC85 bNoC90

Fine tune-500 4.79 12.09 8.10 12.68
LoRA-500 4.14 10.74 7.85 12.10
Ours-500 3.98 10.07 7.25 10.41

Fine tune-1000 4.22 10.78 7.67 11.39
LoRA-1000 4.06 9.10 7.42 12.21
Ours-1000 3.21 8.64 6.83 10.21

Fine tune-2000 3.98 10.22 7.50 11.19
LoRA-2000 3.45 9.19 7.60 10.92
Ours-2000 3.22 8.60 6.84 10.12

Fine tune-all 3.67 9.86 7.26 11.21
LoRA-all 3.40 9.92 7.32 11.09
Ours-all 3.10 8.50 6.66 9.99

Particularly noteworthy is the mbIoU for the initial click,
which surpassed SAM by a remarkable 30.9%, 170.3%, and
54.9% on the three datasets, respectively.
Comparison with Fine-tune moethods. Given the lack of
investigation on fine-tuning or adapter structures in previous
studies of click-based interactive segmentation methods, we
designed the following method to evaluate the improvements
in training efficiency introduced by our approach. Subse-
quently, we conducted a comparative analysis of the training
cost and performance between fine-tuning, LoRA [47] and
ours.

First, we employed PlainViT-Base and PlainViT-Large pre-
trained models from SimpleClick as the backbone networks,
respectively. With a consistent image input size of 448× 448,
we conducted a comprehensive comparison of the training
cost and inference speed among fine-tuning, LoRA, and our
adapters, as outlined in Table IV. The training time and mem-
ory usage per iteration were measured using four RTX2080Ti
GPUs, each with a batch size of 2 per GPU, and the tests
were conducted using FP32. FLOPS and inference speed were
gauged using one RTX2080Ti, with the input image size set
to 448× 448.

Subsequently, we opted for the pre-trained PlainViT-Base
backbone network from SimpleClick and fine-tuned it on a
portion of the new training dataset HQSeg44K to examine the
performance of our methods on novel, specific data distribu-
tions. Fine-tuning was carried out on subsets comprising 500,
1000, 2000 samples, and the entire dataset. The evaluation
took place on the test sets of COIFT [45] and DIS [46].
We utilized the boundary evaluation mbIoU as the accuracy
metric to assess the model’s performance, employing the
corresponding NoC mbIoU. The results are presented in Table
V.

Tables IV and V collectively illustrate the lightweight and
efficient nature of our method. Notably, the training speed
experienced an approximate 38% increase, accompanied by
a noteworthy 24% reduction in memory usage. In terms of
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Fig. 6: Qualitative results on existing benchmarks. We evaluated the performance of our method using mbIoU. The green dots
in the figure represent positive clicks, and the red dots represent negative clicks.

inference, there was a minimal increase in both memory usage
and inference time. A comparative analysis of test results
between fine-tuning and Adapter, using varying numbers of
training samples, reveals that with an increase in the number of
samples, the model’s performance improves consistently, and
the Adapter consistently outperforms fine-tuning and LoRA
with the same backbone.

C. Ablation Study

To assess the effectiveness of each submodule in the
proposed algorithm, ablation experiments were conducted.
The pre-trained PlainViT-Base from SimpleClick on the
COCO+LVIS training set was utilized as the backbone net-
work. The evaluation was carried out on two datasets, DAVIS
[34] and COIFT [45], with NoC IoU and RoF IoU (the ratio
of failed instances) serving as the evaluation metrics. The

results of the ablation experiments are presented in Table
VI. We conducted three distinct sets of ablation experiments,
each examining the impact of different factors: the influence
of selecting ViT features from various layers as early-ViT
features, the impact of early features and spatial prior features
acting independently on performance, and an analysis of the
feature integration process across different fusion methods.

Comparison of different selection of early-layer features
Based on the experiments presented in the first section of
Table VI, it is evident that the first stage of backbone networks
demonstrates an advantage. However, the selection of different
layers in stage one does not yield a significant impact. There-
fore, as a standard practice, we decompose the ViT backbone
network into four stages and opt for the output of the last layer
of the first stage as the early-stage ViT features. For instance,
we choose the fourth layer of PlainViT-Large or the third layer
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TABLE VI: Ablation studies on the selection of early layers,
impact of each submodule, and various fusion strategies.
Baseline from SimpleClick with a PlainViT-Base backbone
network.

DAVIS COIFT
Method NoC85 NoC90 RoF85 NoC85 NoC90 RoF85

SimpleClick-B 4.83 6.47 10.02% 2.88 3.76 8.93%
Stage0 Layer0 3.55 4.82 6.95% 1.93 3.09 8.57%
Stage0 Layer1 3.48 4.85 7.25% 1.96 3.00 3.21%
Stage0 Layer2 3.48 4.86 4.06% 1.86 2.88 2.14%
Stage1 Layer2 4.02 5.44 8.70% 2.28 3.06 8.57%
Stage2 Layer2 3.93 5.92 9.27% 2.20 3.24 8.21%
Fearly

V iT Only 4.22 5.65 7.65% 2.17 3.49 5.71%
Fspm Only 3.81 5.11 6.56% 2.23 3.44 5.00%
Naive Add 3.57 4.85 6.37% 2.06 2.91 5.00%
Naive Cat 3.54 4.91 7.25% 2.00 3.17 8.57%
Cross Attn 3.63 4.96 7.83% 1.97 2.92 4.29%

Two-Way Attn 3.48 4.86 4.06% 1.86 2.88 2.14%

Fig. 7: Limitations of our method. The left side displays the
ground truth. The middle illustrates our prediction results after
a single click. The green dots represent positive clicks, while
the red box marks the specific areas that have been zoomed
in, and the details of these areas are presented on the right
side of the figure.

of SegformerB3.
Enhancements from Spatial Prior and Early-ViT Fea-
tures As depicted in Table VI, the incorporation of early-
ViT features results in a significant improvement of 12.3%
in overall performance. Furthermore, the integration of the
proposed Spatial Prior Module leads to a notable improvement
of 21.0%. Furthermore, the spatial extractor employing de-
formable convolution demonstrated a noteworthy improvement
of 6%, surpassing the 5% performance boost achieved solely
through the early-ViT features.
Comparison of different fusion method In contrast to the
straightforward additive or concatenate feature fusion method,
the bidirectional interactive attention layer significantly en-
hanced the performance of the details extractor by 4.5%.

D. Qualitative Results

Figure 6 shows the results of a comprehensive visual
comparison of the performance of our method using mbIoU.
The samples, sourced from DIS [46] dataset, DAVIS [34]
dataset, and HRSOD [48] dataset, cover images featuring
various complex structures taken from different environments.
Notably, it can be observed that our algorithm generated

significantly more accurate boundaries with the same number
of interaction click points.

Limitations of our method are reported in Figure 7. To
be specific, when processing low-resolution input images, our
method predicted mask discontinuity during the segmentation
of extremely thin structures such as insect legs and butterfly
antennae. To address this problem, additional positive clicks
are needed to ensure continuity in the segmented mask.
Moreover, when the method is used to segment some instances
with slender structures in input images with higher resolutions,
the segmentation mask generated by a single click exhibited
curvature at the edge of the instance, requiring additional click
points for correction.

V. CONCLUSION

In this paper, we propose the ClickAdapter, an advanced
interactive segmentation model that obtains higher-quality
segmentation masks by attaching an adapter layer on top of
the backbone network. The Adapter introduces a small number
of network parameters that do not require pre-training. During
network training, only the parameters of the adapter need to
be trained, which greatly reduces the training consumption of
the interactive segmentation model. By incorporating a detail
extractor in the adapter, we infuse the spatial correlation and
local features of the image into the network to achieve more
refined segmentation results. The ClickAdapter achieved state-
of-the-art interactive segmentation performance on existing
benchmarks, significantly improving the quality of predicted
masks through the incorporation of a detail extractor module.
Additionally, we provide a detailed computational analysis of
our method, highlighting its applicability as a tool for practical
annotation.
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