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Abstract— Reinforcement learning (RL) has emerged as a
promising approach for optimizing traffic signal control (TSC)
to ensure the efficient operation of transportation networks.
However, the traditional trial-and-error technique in RL is usu-
ally impractical in real-world applications. Offline RL, which
trains models using pre-collected datasets, is a more practical
approach. However, this presents challenges such as suboptimal
datasets and limited generalization of pre-trained models. To
address this, we propose an offline-to-online RL framework for
TSC that pre-trains a generalized model and quickly adapts to
new traffic scenarios through online refinement. In the offline
stage, we augment the pre-collected datasets to cover a diverse
set of possible scenarios and use an offline RL method to pre-
train a control model. To ensure generalization, we use FRAP-
like network as our base model, which is designed to learn the
basic logic for signal control. In the online stage, we introduce
a discrepancy measure to tackle inconsistencies between offline
pre-trained models and online scenarios and prioritize samples
based on it. In the experiments, the proposed approach achieves
competitive performance and reduces the training time needed
for learning in new scenarios, compared to several baselines.

I. INTRODUCTION

In recent years, reinforcement learning (RL) [1]-[4] has
emerged as a promising approach to optimizing traffic signal
control (TSC), which plays a critical role in ensuring the
efficient operation of transportation networks. By learning
from the interactions with the environment, RL agents can
optimize TSC that adapts to real-time traffic patterns. How-
ever, to achieve well-trained models, traditional RL methods
usually require a large number of interactions with the real
system. This can be prohibitively expensive and may lead
to severe traffic congestion or accidents. Therefore, most of
the existing methods in the literature are difficult to deploy,
given that trial-and-error techniques of RL are not practical
in real-world applications.

A more practical approach is to employ offline RL [5]-
[10] to train models using pre-collected datasets. In our daily
life, it is often feasible to collect large amounts of traffic
data with existing traffic infrastructure, such as road cameras
and sensors. Then, the dataset can be pre-processed and
transformed into a format suitable for offline RL training.
However, there are still several challenges that need to be
addressed. Firstly, the dataset used to train the policy may be
suboptimal, leading to poor performance of the trained agent.
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Fig. 1. Tllustration of our framework. In the offline stage, we employ offline
reinforcement learning to train a pre-trained model on the static dataset. In
the online stage, the pre-trained model is refined using online transitions
obtained by interacting with the environment.

Secondly, the generalization of the trained policy is usually
very limited, as it may not perform well under different
traffic flows or network configurations. To mitigate these
challenges, an online fine-tuning procedure is required to
allow the agent to adapt to the new environment by gathering
additional experiences. The fine-tuning process enables the
agent to learn from real feedback and refine its policy,
leading to improved performance.

Against this background, we propose a novel offline-to-
online RL framework for TSC, as shown in Fig. 1, which
allows for pre-training a generalized model and can rapidly
adapt to new traffic scenarios. In the offline stage, we use
an offline RL algorithm to pre-train a signal control model
with the pre-collected dataset. Since the offline dataset is
usually insufficient to capture the entire model, we augment
the pre-collected datasets through several feasible solutions,
such that a diverse set of possible scenarios are covered. For
example, traffic flows in opposite directions in the morning
and evening due to commuting. As different intersections
may exhibit different traffic patterns and structures, it is
important to adopt a flexible approach that accommodates
these variances. To ensure the generalizability of pre-trained
models in accounting for various traffic flows and intersec-
tion structures, we implement the network structure inspired
by FRAP [11]. This network is specifically designed to learn
the basic logic for signal control, i.e., phase competition,
regardless of the intersection structure and the local traffic
situation. By doing this, we can develop a well-generalized
initialization from pre-collected datasets. Given this, our
method can be effectively applied to various traffic conditions
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and intersection layouts.

Due to the inconsistency between the offline pre-trained
models and the online scenarios, the pre-trained model
may not achieve optimal performance in new instances. To
address this, an online fine-tuning process is used to adapt
the agent to the new scenarios with online interactions. Since
online interaction is expensive, we expect the pre-trained
model can be fine-tuned with fewer online interactions and
quickly adapt to new traffic scenarios. In order to achieve
such efficiency, we introduce a discrepancy measure based
on the inconsistency between the offline pre-trained models
and the online scenarios, then prioritize samples based on it.
By adjusting the sampling distribution for policy learning,
the policy evaluation can be carried out more accurately and
closer to the new scenarios. As a result, the performance of
the learned policy is improved.

To the best of our knowledge, we are the first to propose
an offline-to-online learning paradigm for RL-based TSC.
Our experiments show that the proposed framework achieves
competitive performance and effectively reduces the training
time and computational resources compared with learning in
new traffic scenarios from scratch.

II. RELATED WORKS

We briefly review some of the most relevant approaches,
including conventional methods and deep RL methods. A
classic conventional approach for TSC is SOTL [12], which
is controlled with demand-responsive rules comparing the
current phase with current traffic. Another conventional
method is MaxPressure [13], which aims to control the
intersection by balancing queue length between neighboring
intersections by minimizing the “pressure” of the phases. It is
considered the state-of-the-art (SOTA) method for network-
level TSC. Rule-based methods rely on predefined sets of
rules to control traffic signals, which are simple and efficient
but cannot handle complex traffic scenarios.

In contrast, RL methods can learn to optimize TSC poli-
cies through interactions with the environment. For example,
[1] proposes an intelligent traffic signal control system
based on deep Q-network (DQN). PressLight [14] uses the
MaxPressure theory and designs the pressure as the reward of
the agents, which has good performance in multi-intersection
TSC. MA2C [15], [16] uses multi-agent advantage actor-
critic (A2C) to cooperatively control multi-intersections.
It includes information about neighborhoods and spatial
discount to stabilize the training. MetalLight [3] utilizes
meta-learning to adapt to the dynamics of the environment.
However, they require a large number of training episodes,
which can be time-consuming and costly. Furthermore, trial-
and-error learning through interaction with the environment
is not feasible in practice. Therefore, we focus on offline
RL methods that learn from offline experience data [17]. It
can significantly reduce training time and computational re-
sources, making it more practical for real-world applications.

(a) Intersection and its 12 movements.

222
T

(b) 8 Phases.

P3
—
—

Fig. 2. Tllustration of the intersection definitions.

III. BACKGROUND

Here, we focus on TSC with multiple intersections in a road
network. As illustrated in Figure 2, we describe the terms
that are commonly used in the research literature [18].

o Lane: A typical intersection usually contains roads in
four directions: north, south, west, and east respectively.
Correspondingly, each road has three types of lanes:
left-lane, through-lane, and right-lane.

« Traffic movement: A traffic movement is defined as the
movement of traffic in a particular direction, such as a
left turn, through, or right turn. As depicted in Figure
2(a), the signal controls eight traffic movements, with
the right turn traffic exempted from signal control but
required to yield on a red light in accordance with traffic
regulations in most countries.

+ Movement signal: A movement signal is defined as
a signal regulating a traffic movement, with green
indicating the movement is permitted and red indicating
it is prohibited.

o Phase: A phase is defined as a combination of the
movement signals. It should be noted that some signals
cannot turn “green” at the same time, i.e., conflicting
signals. Note that the combination of the movement
signals must be non-conflicting signals.

The objective of TSC is to develop an optimal phase cycle

to enhance traffic conditions that minimize lane queue length
and the average time spent by vehicles on approaching lanes.

A. Markov Game

TSC with multiple intersections is usually modeled as
a Markov game, where each intersection in the traf-
fic network is controlled by an agent. Formally, Markov
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game with N agents can be defined as a tuple
(S AW, AOW. |, P, R,y). Here, s € ¥ denotes the true
state of the environment. Each agent i chooses an action
a; € of; at each time step, forming a joint action vector
a = [q;]Y . Different from the MDP, the next state follows
the transition function Z(s'|s,a) : ¥ x &N x .7 — [0,1].
Meanwhile, each agent i receives a local (partial) observation
0; € 0; of the state and a reward r based on the shared reward
function % : S x 7N — R. The goal is to find a set of optimal
policies © = {my, ..., Ty }, where each agent aims to maximize
its own discounted return Y7, ¥ 7.

B. Offline Dataset

We collect road information and control signals from the
real traffic environment and structured them as the transition
(s,a,r,s’) to build offline datasets Z. Considering each
intersection is individually controlled by an agent, each agent
i access the offline dataset D;, which is collected locally by
the sensor in intersection i. Then, we will detail the settings
of D; = {{0,a,r,0')} for TSC:

o Observation o € O: Each agent observes part of the
system state as its own observation. The observed traffic
information is some quantitative descriptions of the
intersection i, i.e., queue length, waiting time, and delay.
In this paper, the observation includes the current phase
and the number of vehicles in every incoming lane.

« Action a € A: For each agent, it decides which phase to
be selected from a phase set. In other words, an action
is an index of the phase.

o Reward r € R: it denotes immediate rewards received
by the agent for a transition from (s,a) to s’. Similar to
the PressLight [14], the reward is defined as r; = —P,
where P, is the pressure of intersection i. The pressure
of an intersection i is defined as the sum of the absolute
pressures of overall traffic movements.

Given the dataset D;, each agent i learns a signal control
policy @ : O — A to optimize the traffic in the intersection.
The policy & can be deployed to the real traffic system since
it is learned from real data.

IV. METHOD

We present a novel approach for TSC based on offline-to-
online RL consisting of two stages. In the offline stage, we
pre-train a generalized model for TSC with data augmenta-
tions and new network architecture. In the online stage, we
quantify the distribution shift between the offline datasets
and the online environment, then correct it with the priority
sample selection. More details will be described next.

A. Pre-training Model with Offline Dataset

In the offline training stage, we pre-train a generalized
control model using the collected offline dataset &. Unlike
traditional RL, an agent cannot collect new data samples
from the environment. Hence, we need several techniques to
increase the generality of the control model. To this end, we
approach the problem from two perspectives: the dataset and
the network model.

1) Data Augmentation: In machine learning, data aug-
mentation (DA) is a well-known technique that can enable
local exploration using trajectories in the dataset [19]-[21].
We can generate new samples ($;,d;,?,811) from existing
transition (s;,a;,r;,s;+1). Note that the transformed transition
(8t,@:,7,5+1) needs to conform to the physical laws in the
environment.

However, if not done properly, DA can have a detrimental
effect on the offline RL process [22]. The main challenge
with offline RL is the inability of the agent to interact
with the environment to refine its policy through trial-and-
error. Consequently, augmenting the training dataset with
unrealistic or implausible samples may not only impede
learning but also compromise the accuracy of the value
functions computed by the Bellman backups. Therefore, it
is essential to ensure that the augmentations preserve the
validity and feasibility of the transitions. Fortunately, we can
use transportation knowledge to verify the correctness of new
samples.

In TSC, DA aims to simulate the variability of traffic pat-
terns in real-world scenarios and generate new data samples
for training the offline RL model. Here, we consider several
strategies for DA in offline RL for TSC:

1. Flipping: flipping the intersection horizontally or ver-
tically can create new training examples for a given
intersection and can be helpful in training the model
to recognize vehicles coming from different directions.

2. Rotation: rotating the intersection by a certain degree,
i.e., 90°, 180° and 270° can help the model recognize
different orientations of vehicles.

3. Noise: noise injection can also be used as a DA tech-
nique, where small amounts of noise are added to the
state. This technique aims to simulate the stochasticity
of real-world environments and improve the robustness
of the trained model. However, such DA strategy also
needs to coincide with the reward obtained from the
augmented state-action pairs, i.e., (8, d;) is reasonable.
Fortunately, in the case of TSC, the reward calculation
is based on heuristics, which offers some flexibility for
incorporating augmented state-action pairs.

To put together, the DA provides a practical and efficient
way to generate diverse and realistic data for training the
offline RL model in TSC.

2) Network Model: When offline data is collected from
various traffic scenarios, it is challenging to account for dif-
ferences in intersection structures and phases in subsequent
test scenarios. To address this, we borrow the FRAP [11]
network for our offline-to-online TSC framework. In more
detail, FRAP is a specially designed network architecture that
learns the phase competition relationships in TSC, which can
effectively share the learned knowledge with similar control
logic. The property is especially helpful when tackling
offline-to-online TSC.

Given this, we employ state-of-the-art offline algorithms
like BCQ [5] to pre-train a generalized model using the
offline dataset Z. Similar to single-agent offline RL, we
assume that each agent i learns from its dataset D; € ¥
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collected by the corresponding traffic light, which contains
transitions (o;,a;,0},r). The straightforward idea is to apply
single-agent offline RL directly to each agent and learn a set
of policies, one by one. The general form of optimization
function for BCQ is as:

Lo =E(oa)n, [+ 700 (0',d) = Qo(0,a)],
Q(o'd) (D

st. d = arg max

d'|Gy(d'|0") /maxy Gy (alo')>T

where G,,(alo) = mp,(alo) is the state-conditioned generative
model to model the distribution of the dataset. The threshold
T maintains the batch-constrained in the dataset, where
setting T = 0 returns Q-learning and 7 = 1 returns behavioral
cloning. The objective enables us to train the Q-function
by the offline dataset D;, and the trained Q-function can be
leveraged to infer the policy by the following:

n(o) = arg max

a|Gy(alo) /max;Gy,(alo)>T

o) (070) )

Note that the pre-trained model may not achieve optimal
performance in a new environment. To address this, an online
fine-tuning process is used to adapt the agent to the new
scenarios by collecting additional experiences.

B. Refining Model with Online Interactions

Here, we aim to explore how to effectively refine the pre-
trained model to facilitate knowledge transfer across different
scenarios. However, the performance of online refinement is
often limited due to the mismatch between various inter-
section structures and phase configurations. Therefore, we
design a scheme that detects and rectifies the inconsistencies
between the offline pre-trained models and online scenarios.
For convenience, we denote the MDP of the offline dataset
as ./ and the MDP of the new environment as ./

With the aim of detecting inconsistencies in new scenarios
and utilizing new samples, we propose a metric to quantify
such inconsistencies and prevent subsequent policy learning
from collapsing due to differences in Q-value estimation.
Specifically, we define the “inconsistency” as the difference
in Q-value estimation between the pre-trained models and
the online scenarios:

€ =Epui (Qul0,0) =0 4(0.0)°] ()

where Q , is the initial pre-trained model and Q 7=
r(o,a) + ymaxQ 4(0',a’) is the estimated value of the
new environment. Note that Q , is the pre-trained model
learned from the offline dataset. Using the estimated Q-
value difference as a metric enables us to detect and fix
inconsistencies at the outset, thus facilitating the exploration
of new environments.

Considering the diversity of dynamic transitions, we be-
lieve that those controversial data should be emphasized.
Inspired by Prioritized Experience Replay (PER) [23], we
store new transitions into the replay buffer with priority

according to the inconsistency. Concretely, we define the
probability of sampling transition i as:

_
Y&
where the denominator item is all transitions in the buffer
ando determines how much prioritization is used. By pri-
oritizing samples with inconsistency, we can improve the
generalization ability of the finetuned model to diverse traffic

scenarios. Now, we update the Q-function by minimizing the
following objectives:

gﬂ = E(o,a,o’)rwt@ [r + ymax Qg (0/7‘1/) — 0o (Oa a)] &)

where 4 is the replay buffer and 0’ is the target network.

Pi

“4)

V. EXPERIMENTS

We empirically evaluate the effectiveness and efficiency of
our approach as follows. Firstly, we assess the performance
of our pre-training procedure by evaluating the learned policy
on the corresponding road networks. Secondly, we demon-
strate the generalizability of the pre-trained policy by refining
it with online interactions, either in the original scenario or
new scenarios. Finally, we conduct ablation studies to better
understand the benefits of our key techniques.

A. Experiments Setting

Dataset. We conducted our experiments in three real-
world traffic roadmap': Jinan(JN), Hangzhou(HZ) and Man-
hattan(MAN). The road network settings are as follows:

e Dpz: The road network of Hangzhou contains 16 in-
tersections in a 4 x 4 city network. The traffic flow is
generated from surveillance camera data.

e Djyy: The road network of Jinan contains 12 inter-
sections in a 4 x 3 city network. The traffic flow is
generated from surveillance camera data.

e Dyan: The road network of Manhattan contains 48
intersections in a 16 x 3 city network. The number of
vehicles generated is sampled from taxi trajectory data.

Among three real-world traffic roadmaps, we use
Hangzhou with light traffic flow as the training scenarios.
The testing scenarios are classified into two types and
introduced as follows: 1) Homogeneous: the testing cities
are similar to training cities except for traffic flow. 2)
Heterogeneous: the testing cities and traffic flow are different
from training cities. The detail of the train and test scenarios
is summarized in Table L.

For offline training, we used a traditional TSC method —
MaxPressure [13] to generate 20 trajectories with noise as the
datasets. Since most real-world TSC applications currently
use traditional methods, such datasets are considered more
realistic and can be obtained from real-world applications.

Evaluation Metric. We used the average travel time
(ATT) of all vehicles in a road network as the measure to
evaluate different methods, which is the most frequently used

Uhttps://traffic-signal-control.github.io
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Fig. 4. Performances of different methods on three real-world data.

TABLE I
DIFFERENT CONFIGURATIONS OF CITIES TRAFFIC DATA.

Datasets  Cities  Num of Intersection  Traffic Flow (Veh/s)
Train HZ 16 0.83
HZ 16 1.82
Test HZ 16 1.94
IN 16 1.21
MAN 48 0.78

measure to evaluate the performance of the TSC method in
transportation. Specifically, ATT is defined as the average
time difference between when all vehicles enter the network
and when they leave the network.

0 20 40 60 80
TrainSteps

100
(e) MAN

Columns (a-d) represent different traffic patterns in Hangzhou city.

B. Baselines

We present a comparative evaluation of our proposed method
against the following baseline methods including both con-
ventional transportation and RL methods. These can be
mainly divided into three categories: 1) Traditional TSC
methods: SOTL [12] is a conventional method that utilizes
current traffic and is controlled with demand-responsive
rules that compare the current phase with current traffic.
MaxPressure [13] aims to balance the queue length between
neighboring intersections by minimizing the pressure of
the phases and is currently the state-of-the-art conventional
method for network-level TSC. 2) Online RL methods:
PressLight [14] uses the max-pressure theory and designs
the pressure as the reward of the agents, which has good
performance in multi-intersection TSC. MA2C [15] uses
multi-agent A2C to control multi-intersections cooperatively,
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TABLE II
OVERALL PERFORMANCE. AVERAGE TRAVEL TIME IS REPORTED IN THE
UNIT OF SECONDS. (BEST VALUES ARE IN BOLD).

Train Config Test Config
Method HZ1 HZ2 HZ3 N MAN
SOTL 753.3 6456 7473 5375 27114
MaxPressure 374.7 4204 418.6  348.7 305.9
PressLight 341.2 4452  406.5 320.8 237.9
MA2C 340.9 491.1 4202 397.6 4575
FRAP 354.3 456.6 4147 3264 619.2
MetaLight 354.1 536.2 447.0 328.1 322.7
Offline RL 3534 526.8 4357 5243 934.6
Ours 339.5 413.5 4009  307.7 241.6

including information on neighborhood and spatial discount
to stabilize the training process. FRAP [11] framework aims
to enhance data efficiency and robustness in traffic signal
control by designing a network structure that captures the
phase competition relation between different traffic move-
ments. MetaLight [3] is a meta-RL-based method that learns
to adapt to different traffic scenarios by utilizing a meta-
learner to update the policy parameters. 3) Offline RL
method: [5] is an offline RL method that learns the FRAP-
based policy from datasets without online refinement.

C. Results

1) Overall Performance: We conduct experiments to
compare our method with existing meta-RL methods and an
online RL method that learns from scratch. To this end, we
utilize datasets collected from Hangzhou to train and fine-
tune our method in either the original city or the new one.
As shown in Fig. 4(a-c), we conduct experiments in the same
city but with different traffic patterns. Experimental results
show that our method and Meta-Light outperform the algo-
rithm trained from scratch, both in the initial performance,
time to converge, and the final learned performance. These
findings provide the effectiveness of pre-training and meta-
learning. However, we observe that Meta-Light struggles to
achieve satisfactory performance, particularly in challenging
maps when tested on different cities. This limitation is
attributed to its disregard for the diversity of Meta Learner
and inconsistency during migration to new environments.
Conversely, our method takes these factors into consider-
ation, thereby maintaining optimal performance in terms
of initial performance, time to converge, and final learned
performance when tested in new cities. We will illustrate the
statement later in the ablation experiments.

We show the evaluation performance of our method and
all baselines as well as conventional TSC and RL-based TSC
in Table II. The proposed method outperforms most methods
in the five different scenarios, leading to the least travel time
of all vehicles. It is worth mentioning that Offline RL can
achieve good results on the train configuration, but it does not
perform well on the test configuration, which also illustrates
the importance of online refinement.

100
80
60
40
20
o m I | - -
HZ1 HZ2 HZ3 Jinan Manhattan
mQOurs ®Metalight ®FRAP = PressLight mMA2C
Fig. 5. Number of Episodes to Converge.
TABLE III
THE INITIAL PERFORMANCE WITHOUT FINETUNE.
Maps HZ1 HZ2 HZ3 Jinan  Manhattan Mean
w/ DA 368.7 492.7 4241 3395 743.5 473.7
w/o DA 3534 5268 4357 5243 934.6 554.9

2) Sample Efficiency: As previously mentioned, the pri-
mary challenge in implementing RL-based TSC approaches
in real-world scenarios is the impracticality of trial-and-
error for environmental interaction. Hence, there is a need
for a method that exhibits both high sample efficiency and
good initial performance. Specifically, the ideal approach
would require minimal interactions to achieve satisfactory
performance levels. To assess the efficacy of our pre-training
and fine-tuning approach in enhancing sample efficiency,
we evaluate our framework against other RL-based Traf-
fic Signal Control (TSC) methods that lack a pre-training
phase. As shown in Figure 5, we present the number of
interactions with the environment required by each method to
attain the convergence performance. Our pre-trained model
exhibits considerably lower interaction requirements than the
baselines, thereby validating the efficacy of our approach in
improving sample efficiency.

D. Ablation Study

Here, we investigate how each component’s effectiveness
affect our method’s performance. As shown in Fig. 6(a),
the performance without consistency PER (w/o CPER),
FRAP-based model or DA (w/o DA) is worse than our
method, which confirms the usefulness of our method. We
quantitatively demonstrate the effectiveness of CPER in
our method. As shown in Fig. 6(b), we report the trend
of the inconsistency value during the training process. We
found that CPER can help the process of online refinement
quickly converge, as they emphasize the transition with high
inconsistency value and correct the dynamic gap between the
pre-trained models and the online scenarios.

As mentioned in Section IV-A, DA serves as a simple
technique that can help to reduce overfitting and improve
the generalization performance of the pre-trained model.
To investigate the effectiveness of DA, we report the initial
performance of the pre-trained model without the online
refinement. As shown in Table III, when we tested the pre-
trained model in different scenarios, i.e., HZ2, HZ3, Jinan
and Manhattan, we found that the initial performance of the
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Fig. 6. Ablation Study. (a) Performance on Jinan Roadnet with and without
Consistency Prioritized Experience Replay (CPER), FRAP-based model or
Data Augmentation (DA). (b) The trend of the inconsistency value during
the training process.

method with DA is higher than that of the method without
DA. We think the phenomenon comes from DA providing
a more diverse dataset and improving the generalization
ability of the pre-trained model to various traffic scenarios.

VI. CONCLUSIONS

In this paper, we proposed a novel offline-to-online RL
framework for TSC that provides a potential direction for
real-world deployment of RL-based TSC. By utilizing pre-
collected datasets and the FRAP network structure, we are
able to pre-train a generalized model that can be adapted to
various traffic scenarios. The online refinement process with
a discrepancy measure and priority sample further improves
the agent’s performance in new scenarios with minimal
online interactions. Our experimental results demonstrate the
effectiveness and efficiency of our proposed approach in
comparison to several state-of-the-art methods, especially in
terms of effectively reducing the training time and computa-
tional resources needed for learning in new traffic scenarios.
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