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A B S T R A C T

The Traveling Repairman Problem with Profits is to select a subset of nodes (customers) in a weighted graph to
maximize the collected time-dependent revenues. We introduce an intensification-driven local search algorithm
for solving this challenging problem. The key feature of the algorithm is an intensification mechanism that
intensively investigates bounded areas around each very-high-quality local optimum encountered. As for its
underlying local optimization, the algorithm employs an extended variable neighborhood search procedure
which adopts for the first time a 𝐾-exchange sampling based neighborhood and a concise perturbation
procedure to obtain high-quality solutions. Experimental results on 140 benchmark instances show a high
performance of the algorithm by reporting 36 improved best-known results (new lower bounds) and equal
best-known results for 95 instances. Additional experiments are conducted to investigate the usefulness of the
key components of the algorithm.
1. Introduction

Problem statement. The traveling repairman problem (TRP) (Blum,
Chalasani, Coppersmith, Pulleyblank, Raghavan, & Sudan, 1994) is
a popular combinatorial optimization problem, which is known to
be -hard in Afrati, Cosmadakis, Papadimitriou, Papageorgiou, and
Papakostantinou (1986). Generally, the problem can be defined as
follows. Given a complete weighted graph 𝐺(𝑉 ,𝐸), 𝑉 represents the
vertex set and 𝐸 is the edge set. The vertex set 𝑉 is partitioned into
𝑉 = {0} ∪ 𝑉𝑐 where 0 is the depot and 𝑉𝑐 = {1, 2,… , 𝑛} represents the
set of 𝑛 customers. Each edge (𝑖, 𝑗) ∈ 𝐸 = {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗} is
associated with a symmetric weight 𝑑𝑖,𝑗 = 𝑑𝑗,𝑖 representing the travel
time (or distance in the Euclidean plane) between the two vertices.
The objective of the TRP is to find a Hamiltonian path such that the
total waiting time ∑𝑛

𝑖=0 𝑙(𝑖) is minimal, where 𝑙(𝑖) is the waiting time of
customer 𝑖 with 𝑙(0) being set to 0.

The traveling repairman problem with profits (TRPP) (Dewilde,
Cattrysse, Coene, Spieksma, & Vansteenwegen, 2013) generalizes the
TRP by adding a non-negative profit 𝑝𝑖 to each vertex 𝑖. A repairman
starts his travel from vertex 0 (depot) and collects a revenue 𝑝𝑖−𝑙(𝑖) from
each visited vertex (customer). The TRPP distinguishes itself from the
TRP by selecting a subset of customers to visit, which means that it is
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unnecessary to visit all customers and the trip stops when no positive
revenue can be further collected. The objective of the TRPP is to find
the open Hamiltonian circuit to maximize the total collected revenue.
Formally, for a given solution 𝜑 = {𝑥0, 𝑥1, 𝑥2,… , 𝑥𝑚} (𝑥0 = 0 and
𝑥𝑖 ∈ 𝑉𝑐 , 𝑖 = 1, 2, .., 𝑚), the objective function value is given by:

𝑓 (𝜑) =
𝑚
∑

𝑖=0

[

𝑝𝑥𝑖 − 𝑙(𝑥𝑖)
]+

. (1)

where 𝑚 is the number of visited customers and the revenue collected
for each visited customer

[

𝑝𝑥𝑖 − 𝑙(𝑥𝑖)
]+

is obtained as follows.

[

𝑝𝑥𝑖 − 𝑙(𝑥𝑖)
]+

=

{

𝑝𝑥𝑖 − 𝑙(𝑥𝑖), if 𝑝𝑥𝑖 − 𝑙(𝑥𝑖) ≥ 0,
0, otherwise.

(2)

Eq. (1) can be reformulated into another form if the collected
revenue 𝑝𝑥𝑖 − 𝑙(𝑥𝑖) is non-negative for all the customers in 𝜑:

𝑓 (𝜑) =
𝑚
∑

𝑖=0
𝑝𝑥𝑖 −

𝑚−1
∑

𝑖=0
(𝑚 − 𝑖) ⋅ 𝑑𝑥𝑖 ,𝑥𝑖+1 . (3)
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Eq. (3) is significant to perform fast evaluations during the search
process (Pei, Mladenović, Urošević, Brimberg, & Liu, 2020), which is
also adopted in this study.

The TRPP can be reduced to the TRP by setting the profit of
each vertex to an extremely large value, and was shown to be -
ard (Dewilde et al., 2013). As indicated in the literature (Avci &
vci, 2017; Dewilde et al., 2013; Lu, Hao, & Wu, 2019), the TRPP
odel has relevant applications in relief efforts management such as
umanitarian and emergency relief logistics. For example, after an
arthquake, assuming that 𝑝𝑖 persons are in danger for each village 𝑖,
person will die at each time moment. A rescue team starts from its

ase and visit the damaged villages to save lives. Consequently, the goal
f the rescue team is to save as many lives as possible ∑

𝑖
[

𝑝𝑖 − 𝑙(𝑖)
]+,

where 𝑙(𝑖) is the arriving time of the rescue team for village 𝑖.

iterature review. In 2013, Dewilde et al. (2013) introduced a mixed
/1 linear programming model of the TRPP. They also proposed a
abu search (TS) algorithm with multiple neighborhoods (e.g., remove-
nsert, move-down, move-up, swap, 2-opt, or-opt...) as well as a greedy
nitialization procedure. Six sets of 120 benchmark instances with 𝑛 =
0, 20, 50, 100, 200, 500 were created based on various graphs of TSPLIB.1
he TS algorithm was shown to be able to find high-quality solutions
ithin a short time even for large instances. They also reported optimal
alues for small instances with 𝑛 = 10, 20 by solving the 0/1 linear

program with CPLEX.
In 2017, Avci and Avci (2017) introduced a greedy randomized

adaptive search procedure with iterated local search (GRASP-ILS). In
addition to its greedy randomized solution construction procedure,
the proposed algorithm is characterized by its ILS procedure which
combines a tabu-enhanced variable neighborhood descent algorithm
with an adaptive perturbation mechanism. This algorithm improved
46 best results reported by Dewilde et al. (2013) and matched the
best-known results for the remaining instances.

Later in 2019, the same authors (Avci & Avci, 2019) proposed an
adaptive large neighborhood search algorithm (ALNS) for the related
multiple traveling repairman problem with profits (MTRPP) and the
TRPP. ALNS consists of a couple of problem-specific destroy operators
and two new randomized repair operators. Tested on the benchmark
instances of the TRPP, ALNS updated 36 previous best-known results.

In 2019, Lu et al. (2019) presented a population-based hybrid evo-
lutionary search algorithm (HESA) for solving the TRPP. The algorithm
employs a randomized greedy construction method to create initial
solutions, two crossover operators to generate new solutions and a
dedicated variable neighborhood search to improve each new solution.
Computational results on six sets of 120 instances showed that this
HESA was able to improve the best-known results for 39 instances and
match the best-known results for the remaining instances.

In 2020, a general variable neighborhood search approach for solv-
ing the TRPP (GVNS-TRPP) was introduced in Pei et al. (2020). This
algorithm integrates different neighborhoods (Insertion, 2-opt, Swap,
Add, Drop...) and auxiliary data structures to improve the efficiency
of the search. They studied six different variants of the determinis-
tic variable neighborhood descent (VND) applied to these neighbor-
hoods according to six specific orders as well as a VND variant where
the neighborhoods are applied at random (VND-R). They tested their
GVNS-TRPP algorithm with VND-R on 120 instances and improved 40
best-known results. To further assess the algorithm, they also reported
computational results on a new set of 20 large instances with 𝑛 = 1000.
According to the reported computational result, GVNS-TRPP can be
considered to represent the state-of-the-art for solving the TRPP. As a
result, this algorithm is used as the main reference algorithm in this
study.

Contributions. This study aims to enrich the toolbox of practical
solution methods for the TRPP and introduces an intensification-driven
local search algorithm. The contributions are summarized as follows.

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
2

In terms of algorithm design, the proposed intensification-driven
local search for the TRPP (IDLS-TRPP) integrates an original mecha-
nism that examines bounded areas around each very-high-quality local
optimum discovered by the underlying local optimization procedure.
This mechanism uses the elite local optimum as the search center
from which local optimization is repetitively launched to explore the
surrounding areas to locate other high-quality local optima. The under-
lying local optimization procedure extends the variable neighborhood
search by introducing for the first time a K-exchange sampling based
neighborhood and combining it with a random exploration of four
other known neighborhoods (Swap, Insert, 2-opt and Or-opt). IDLS-TRPP
additionally adopts the first neighborhood reduction technique (using
candidate sets) and integrates known streamlining techniques to ensure
an efficient neighborhood evaluation.

Intensive computational evaluations on the 140 TRPP benchmark
instances in the literature demonstrate a remarkable performance of the
proposed algorithm. It discovers new best-known solutions (improved
lower bounds) for 36 large instances and matches the best-known
results for 95 other instances.

Outline. The remainder of this paper is organized as follows. Section 2
introduces the general scheme of the proposed algorithm, the greedy
initialization procedure, the extended variable neighborhood search
procedure as well as the concise perturbation phase. Section 3 presents
computational results and comparisons with the literature. Section 4
experimentally investigates the influences of the key components of
IDLS-TRPP over the performance of the algorithm. Section 5 draws
conclusions and provides perspectives.

2. An intensification-driven local search for the TRPP

2.1. General scheme

The IDLS-TRPP algorithm is inspired by the Distance Guided Local
Search (DGLS) framework (Porumbel & Hao, 2020), which provides an
effective way to enhance the intensification capacity of an underlying
local search procedure. The basic idea of DGLS is to perform inten-
sified exploration around each very-high-quality local optimum (elite
solution) 𝜑𝑒 in a systematic way to find other still better solutions.
This is achieved by launching repetitively the underlying local search
procedure starting from 𝜑𝑒 and each local search runs within a sphere
of radius 𝑅. As such, unlike a conventional local search whose search
trajectory is a continuous search path, a DGLS search trajectory is a
tree-like structure, reducing thus the possibility for the search process
to miss nearby high-quality solutions, which may happen with the
conventional local search (Porumbel & Hao, 2020).

Based on the above idea of DGLS, the proposed algorithm for the
TRPP adopts a simplified approach to explore the nearby solutions
around elite local optima. Let 𝜑∗ be the best solution found so far,
IDLS-TRPP repetitively runs from 𝜑∗ a underlying local search, which
is composed of an extended variable neighborhood search phase and
a concise perturbation phase. Each run of the local search repeats
these two phases until a solution better than 𝜑∗ is encountered or the
repetitions reach a search depth fixed by a parameter 𝑅 (which mimics
the radius parameter of DGLS). If the local search reaches the fixed
search depth, a new local search is launched again starting from a
slightly perturbed 𝜑∗. During a local search run, if a new solution better
than 𝜑∗ is found, IDLS-TRPP uses the new best solution to update 𝜑∗,
from which a new cycle of local search runs is performed to explore the
nearby local optima around the newly discovered elite solution. Fig. 1
illustrates the tree-like search structure of the IDLS-TRPP algorithm.

The pseudo-code of the proposed algorithm is shown in Algo-
rithm 1, which relies on three components: greedy initialization proce-
dure (GreedyIniSol), extended variable neighborhood search procedure
(EVNS) and concise perturbation procedure (CPerturb).

IDLS-TRPP starts by generating an initial solution 𝜑 with the
GreedyIniSol procedure (line 7), constructing the candidate sets by

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Fig. 1. Illustration of the tree-like search structure of the IDLS-TRPP algorithm. Around each new elite solution 𝜑∗, the underlying local search procedure is repetitively run to
xplore nearby local optima with a search depth limited to 𝑅 (blue dotted lines). Once a new improving solution is found (red lines), the best found solution 𝜑∗ is updated and

a new bounded search area is created based on this new found solution (within the green dotted lines).
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Algorithm 1 Intensification-driven local search for the TRPP (IDLS-
TRPP)
1: Input: Input graph 𝐺(𝑉 ,𝐸), search depth limit 𝑅, evaluation function

𝑓 and cutoff-time 𝑇𝑚𝑎𝑥
2: Output: Best found solution 𝜑∗

3: /* 𝐺𝑟𝑒𝑒𝑑𝑦𝐼𝑛𝑖𝑆𝑜𝑙 is used to generate a good-quality solution. */
4: /* 𝐼𝑛𝑖𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑡 is used to initialize the candidate sets. */
5: /* 𝐸𝑉 𝑁𝑆 is used to perform the local optimization. */
6: /* 𝐶𝑃𝑒𝑟𝑡𝑢𝑟𝑏 is used to modify (slightly) the input local optimum. */
7: 𝜑 ← 𝐺𝑟𝑒𝑒𝑑𝑦𝐼𝑛𝑖𝑆𝑜𝑙() // See Section 2.2
8: 𝐼𝑛𝑖𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑡() // See Section 2.3.1
9: 𝜑∗ ← 𝜑
0: 𝐶𝑡 ← 0
1: while 𝑇𝑚𝑎𝑥 is not reached do
2: 𝜑 ← 𝐸𝑉 𝑁𝑆(𝜑) // See Section 2.3
3: if 𝑓 (𝜑) < 𝑓 (𝜑∗) 𝑎𝑛𝑑 𝐶𝑡 < 𝑅 then

14: 𝐶𝑡 ← 𝐶𝑡 + 1
15: 𝜑 ← 𝐶𝑃𝑒𝑟𝑡𝑢𝑟𝑏(𝜑) // See Section 2.4
16: else if 𝑓 (𝜑) < 𝑓 (𝜑∗) 𝑎𝑛𝑑 𝐶𝑡 ≥ 𝑅 then
17: 𝐶𝑡 ← 0
18: 𝜑 ← 𝐶𝑃𝑒𝑟𝑡𝑢𝑟𝑏(𝜑∗)
19: else
20: 𝐶𝑡 ← 0
21: 𝜑∗ ← 𝜑
22: 𝜑 ← 𝐶𝑃𝑒𝑟𝑡𝑢𝑟𝑏(𝜑)
23: end if
24: end while
25: return 𝜑∗

IniCandidateSet (line 8) and initiating the best found solution 𝜑∗ as
well as the search depth counter 𝐶𝑡 (lines 9–10). Then it enters the
main loop (lines 11–24) to explore new solutions by iterating the
EVNS procedure and the CPerturb procedure. For each while loop, the
current solution is first improved by EVNS (Section 2.3), the CPerturb
procedure is then applied either to the current or the best found
solution. First, if the previous best solution 𝜑∗ is not updated and the
search depth 𝑅 is not reached (𝐶𝑡 < 𝑅), the counter 𝐶𝑡 is incremented
nd CPerturb is operated on the current solution 𝜑 (lines 13–15). This
llows EVNS to continue its trajectory from a slightly modified solution.
econd, if EVNS reaches the search depth limit (𝐶𝑡 ≥ 𝑅), the counter
𝑡 is reset to 0 and CPerturb is applied to perturb the best solution 𝜑∗

lines 16–18). This triggers a new search trajectory from 𝜑∗. Finally,
f EVNS reaches a solution 𝜑 better than the best solution 𝜑∗, the best
olution 𝜑∗ is updated, the counter 𝐶𝑡 is reset to 0, and the perturbation
s performed on the new elite solution 𝜑∗ (lines 19–23). This enables the
lgorithm to move definitively to the new search area centered at the
ewly discovered elite solution. The whole algorithm stops when the
3

Algorithm 2 Greedy initialization procedure (GreedyIniSol)
1: Input: Input graph 𝐺(𝑉 ,𝐸) and the maximum size of the subset 𝑞.
2: Output: Current solution 𝜑.
3: /* 𝜑 is a permutation where 𝜑(𝑘) denotes the customer on position 𝑘

*/
4: 𝜑(0) ← 0
5: 𝑉𝑟 ← {1, 2, ..., 𝑛}
6: 𝑘 ← 1
7: repeat
8: 𝑉𝑎 ← subset of 𝑉𝑟 with the 𝑚𝑖𝑛(𝑞, 𝑛−𝑘+1) customers which have the

largest ratio of profit-distance with respect to the previous customer
𝜑(𝑘 − 1)

9: 𝜑(𝑘) ← randomly select one customer from 𝑉𝑎
10: 𝑉𝑟 ← 𝑉𝑟 ⧵ {𝜑(𝑘)}
11: 𝑘 ← 𝑘 + 1
12: until All customers receive a position.
13: return 𝜑

given cutoff-time 𝑇𝑚𝑎𝑥 is reached and the best solution 𝜑∗ ever found
is returned (line 25).

2.2. Greedy initialization procedure

In the greedy initialization procedure, the main operation is to
add a customer to the current partial solution iteratively until all the
customers are used to construct a complete solution 𝜑 (an array), where
𝜑(𝑘) denotes the customer on position 𝑘.2 To determine the customer
for a position, we consider the profit-distance ratio of a vertex 𝑥𝑗 with
respect to another vertex 𝑥𝑖, given by 𝑟𝑥𝑖 ,𝑥𝑗 =

𝑝𝑥𝑗
𝑑𝑥𝑖,𝑥𝑗

.
The pseudo-code of this procedure is presented in Algorithm 2.

t first, the depot is added to the initial empty solution 𝜑, the set
f customers 𝑉𝑟 is initialized and 𝑘 is set to 1 (lines 4–6). Then the
lgorithm iteratively assigns a customer to each position (lines 7–
2). For position 𝑘, a subset 𝑉𝑎 ⊆ 𝑉𝑟 is generated by selecting the
𝑖𝑛(𝑞, 𝑛 − 𝑘 + 1)3 customers with the largest profit-distance ratio with

espect to the customer of the previous position 𝜑(𝑘−1) (line 8). Then,
random customer from 𝑉𝑎 is assigned to 𝜑(𝑘) and removed from 𝑉𝑟

lines 9–10). The process is repeated until all customers are assigned
position. In our work, 𝑞 (maximum size of the subset) is set to 3.

he whole initialization procedure can be finished in a time complexity
(𝑛2).

2 The notion ‘position’ here represents the index in an array.
3 𝑚𝑖𝑛(𝑎, 𝑏) denotes the smaller value between 𝑎 and 𝑏.
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Algorithm 3 Extended Variable Neighborhood Search (EVNS)
1: Input: Evaluation function 𝑓 and current solution 𝜑
2: Output: Local best solution 𝜑
3: /* 𝑁1, 𝑁2, 𝑁3, 𝑁4 represent 𝑆𝑤𝑎𝑝, 𝐼𝑛𝑠𝑒𝑟𝑡, 2-𝑜𝑝𝑡 and 𝑂𝑟-𝑜𝑝𝑡 neighbor-

hoods. */
4: /* 𝑁𝐴𝑑𝑑 , 𝑁𝐷𝑟𝑜𝑝, 𝑁𝑘𝑒𝑠 denote 𝐴𝑑𝑑, 𝐷𝑟𝑜𝑝 and 𝐾-𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

neighborhoods. */
5: repeat
6: 𝜑𝑙𝑏 ← 𝜑
7: 𝜑 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝜑,𝑁𝐴𝑑𝑑 )
8: 𝑁𝐿 ← {𝑁1, 𝑁2, 𝑁3, 𝑁4}
9: while 𝑁𝐿 ≠ ∅ do
10: Randomly choose a neighborhood 𝑁 ∈ 𝑁𝐿
11: 𝜑 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝜑,𝑁)
12: 𝜑 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝜑,𝑁𝐷𝑟𝑜𝑝)
13: 𝑁𝐿 ← 𝑁𝐿 ⧵ {𝑁}
14: end while
15: 𝜑 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝜑,𝑁𝑘𝑒𝑠)
16: 𝜑 ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝜑,𝑁𝐷𝑟𝑜𝑝)
17: until 𝑓 (𝜑𝑙𝑏) ≥ 𝑓 (𝜑)
18: return 𝜑

2.3. Extended variable neighborhood search

The variable neighborhood search (VNS) method (Hansen & Mlade-
nović, 2005) has been applied to a number of routing problems
(Frifita, Masmoudi, & Euchi, 2017; Fu, Redi, Halim, & Jewpanya, 2020;
Karakostas, Sifaleras, & Georgiadis, 2019, 2020; Mladenović, Urošević,
Ilić, et al., 2012; Soylu, 2015; Xu & Cai, 2018). It has also proved to
be quite successful for solving the TRPP, as illustrated in the litera-
ture (Avci & Avci, 2017, 2019; Lu et al., 2019; Pei et al., 2020). For
this reason, we also adopt the VNS framework to build our underlying
local optimization component and we explain the main differences
between our approach and the existing approaches in Section 2.5. The
proposed approach is an extended VNS procedure (EVNS) composed of
two phases. The first phase uses the descent local search to explore four
neighborhoods (generated by Swap, Insert, 2-opt, Or-opt) in a random
order (See Section 2.3.2), similar to the VND-R procedure in Pei et al.
(2020). The second phase employs a new K-exchange sampling based
neighborhood to further improve the local optimum from the first phase
(See Section 2.3.3). Both phases employ the first-improving strategy
(i.e., accepting the first improving solution encountered). This is the
first time that this strategy is adopted to solve the TRPP and we will
assess its usefulness in Section 4.2.

The pseudo-code of EVNS is presented in Algorithm 3. At first, the
current solution 𝜑 is recorded as the local best solution 𝜑𝑙𝑏 (line 6).
Then a local optimization based on the 𝐴𝑑𝑑 operator is used to add
customers to the solution (line 7). The set of neighborhoods 𝑁𝐿 is
initialized by 𝑁1, 𝑁2, 𝑁3, 𝑁4 which represent the 𝑆𝑤𝑎𝑝, 𝐼𝑛𝑠𝑒𝑟𝑡, 2-𝑜𝑝𝑡
nd 𝑂𝑟-𝑜𝑝𝑡 neighborhoods respectively (Section 2.3.2). In the inner loop
lines 9–14), these four neighborhoods are explored by the descent
ocal search in a random order, each descent being followed by a
escent with the 𝐷𝑟𝑜𝑝 neighborhood. When this local search with
hese four neighborhoods terminates, a local optimization based on the
-𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 neighborhood (𝑁𝑘𝑒𝑠) is performed, followed by

a descent with the 𝐷𝑟𝑜𝑝 neighborhood (lines 15–16). This process is
repeated until the local best solution 𝜑 cannot be further improved any
more (line 17). At this point, the search is considered to be trapped
into a deep local optimum and the concise perturbation (Section 2.4) is
triggered to displace the search to a new area according to the strategy
explained in Section 2.1.

2.3.1. Candidate set
To accelerate the calculation for solving the traveling salesman

problem (TSP) (Flood, 1956) and the vehicle routing problem (VRP)
4

(Dantzig & Ramser, 1959), researchers usually examine a number of
most promising neighboring solutions rather than all solutions in the
neighborhood. For example, the Lin–Kernighan (𝐿𝐾) heuristic (Lin,
1965) usually restricts the inclusion of links in the tour to the five
nearest neighbors to a given vertex. This technique is realized by
introducing a candidate set (candidate list) containing a limited number
of candidates for a given customer. For routing problems (Bentley,
1992; Lust & Jaszkiewicz, 2010), there are several methods to construct
the candidate set, such as the nearest method (Lin, 1965), the 𝛼-nearest
method (Helsgaun, 2000) and the granular neighborhood method (Toth
& Vigo, 2003). In this work, we employ the nearest method to generate
two candidate sets 𝑆𝑘𝑒𝑠 and 𝑆𝑛𝑓 , where 𝑆𝑘𝑒𝑠 is constructed for the
𝐾-𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 neighborhood (Section 2.3.3) and 𝑆𝑛𝑓 is prepared
for the other neighborhoods generated by Swap, Insert, 2-opt, Or-opt
(Section 2.3.2). The maximum size 𝑙𝑘𝑒𝑠 and 𝑙𝑛𝑓 for the candidate sets
𝑆𝑘𝑒𝑠 and 𝑆𝑛𝑓 are determined in Section 3.2.

2.3.2. Classic neighborhoods
The six operators to generate neighborhoods were used in pre-

vious studies (Avci & Avci, 2017, 2019; Lu et al., 2019; Pei et al.,
2020). However, candidate lists are also employed to generate these
six neighborhoods, where 𝑁1 − 𝑁4 only change the visiting order of
the selected customers and 𝑁𝐴𝑑𝑑 as well as 𝑁𝐷𝑟𝑜𝑝 change the list of
visited customers.

For a given solution 𝜑 = {𝑥0, 𝑥1,… , 𝑥𝑚}, let 𝑚 be the number of
visited customers and 𝑙𝑛𝑓 represent the maximum size of the candidate
set 𝑆𝑛𝑓 . These six neighborhoods are defined as follows:

(1) 𝑁1 (𝑆𝑤𝑎𝑝): The positions of two customers are exchanged. Ex-
ploring the 𝑆𝑤𝑎𝑝 neighborhood with respect to 𝑆𝑛𝑓 could be
finished within 𝑂(𝑚 ⋅ 𝑙𝑛𝑓 ) (see below):

𝑁1(𝜑) = {𝜑′ = 𝜑⊕𝑆𝑤𝑎𝑝(𝑥𝑖, 𝑥𝑗 ), 0 < 𝑖 ≤ 𝑚, 0 < 𝑗 ≤ 𝑚, 𝑥𝑗 ∈ 𝑆𝑛𝑓 (𝑥𝑖)}

where 𝜑′ = 𝜑 ⊕ 𝑆𝑤𝑎𝑝(𝑥𝑖, 𝑥𝑗 ) denotes the solution obtained by
exchanging the positions of 𝑥𝑖 and 𝑥𝑗 from the current solution
𝜑.

(2) 𝑁2 (𝐼𝑛𝑠𝑒𝑟𝑡): A customer is removed from its position and inserted
between two adjacent customers. Exploring the 𝐼𝑛𝑠𝑒𝑟𝑡 neighbor-
hood with respect to 𝑆𝑛𝑓 requires 𝑂(𝑚 ⋅ 𝑙𝑛𝑓 ) time (Pei et al.,
2020):

𝑁2(𝜑) = {𝜑′ = 𝜑⊕𝐼𝑛𝑠𝑒𝑟𝑡(𝑥𝑖, 𝑥𝑗 ), 0 < 𝑖 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑚, 𝑥𝑗 ∈ 𝑆𝑛𝑓 (𝑥𝑖)}

where 𝜑′ = 𝜑 ⊕ 𝐼𝑛𝑠𝑒𝑟𝑡(𝑥𝑖, 𝑥𝑗 ) depicts the solution obtained by
inserting 𝑥𝑖 to the position between 𝑥𝑗 and 𝑥𝑗+1 from the current
solution 𝜑.

(3) 𝑁3 (2-𝑜𝑝𝑡): Two non-adjacent edges are removed and replaced
by two new edges to reconnect the circuit. Exploring the 2-𝑜𝑝𝑡
neighborhood with respect to 𝑆𝑛𝑓 can be finished within 𝑂(𝑚 ⋅
𝑙𝑛𝑓 ) (Pei et al., 2020):

𝑁3(𝜑)

= {𝜑′ = 𝜑⊕ 2-𝑜𝑝𝑡(𝑥𝑖, 𝑥𝑗 ), 0 ≤ 𝑖 < 𝑚, 0 ≤ 𝑗 < 𝑚, |𝑖 − 𝑗| > 1, 𝑥𝑗
∈ 𝑆𝑛𝑓 (𝑥𝑖)}

where 𝜑′ = 𝜑 ⊕ 2-𝑜𝑝𝑡(𝑥𝑖, 𝑥𝑗 ) represents the solution obtained by
removing two edges ((𝑥𝑖, 𝑥𝑖+1) and (𝑥𝑗 , 𝑥𝑗+1)), as well as recon-
necting two new edges ((𝑥𝑖, 𝑥𝑗 ) and (𝑥𝑖+1, 𝑥𝑗+1)) from the current
solution 𝜑.

(4) 𝑁4 (𝑂𝑟-𝑜𝑝𝑡): A block of ℎ (ℎ = 2, 3) consecutive customers is
removed and inserted between two adjacent customers. Exploring
the 𝑂𝑟-𝑜𝑝𝑡 neighborhood with respect to 𝑆𝑛𝑓 requires 𝑂(ℎ ⋅𝑚 ⋅ 𝑙𝑛𝑓 )
time (Pei et al., 2020):

𝑁4(𝜑)

= {𝜑′ = 𝜑⊕𝑂𝑟-𝑜𝑝𝑡(𝑥𝑖, 𝑥𝑗 , ℎ), 0 < 𝑖 ≤ 𝑚 + 1 − ℎ, 0 < 𝑗 ≤ 𝑚, 𝑥𝑗
∈ 𝑆𝑛𝑓 (𝑥𝑖)}
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where 𝜑′ = 𝜑 ⊕ 𝑂𝑟-𝑜𝑝𝑡(𝑥𝑖, 𝑥𝑗 , ℎ) depicts the solution obtained
by inserting the sequence of (𝑥𝑖, 𝑥𝑖+1,… , 𝑥𝑖+ℎ−1) to the position
between 𝑥𝑗 and 𝑥𝑗+1 from the current solution 𝜑.

(5) 𝑁𝐴𝑑𝑑 (𝐴𝑑𝑑): One unselected customer is added to some position
of the solution. The complexity of exploring the complete 𝐴𝑑𝑑
neighborhood is 𝑂((𝑛 − 𝑚) ⋅ 𝑚) (Pei et al., 2020).

(6) 𝑁𝐷𝑟𝑜𝑝 (𝐷𝑟𝑜𝑝): One selected customer is dropped from the solution.
The complexity of exploring the complete 𝐷𝑟𝑜𝑝 neighborhood is
𝑂(𝑚) (Pei et al., 2020).

According to Pei et al. (2020), evaluating one neighboring solution
f 𝐼𝑛𝑠𝑒𝑟𝑡, 2-𝑜𝑝𝑡, 𝑂𝑟-𝑜𝑝𝑡,4 𝐴𝑑𝑑 and 𝐷𝑟𝑜𝑝 requires 𝑂(1) time. We show

here the complexity for evaluating one neighboring solution of 𝑆𝑤𝑎𝑝
neighborhood 𝑁1 and the whole neighborhood.

Proof. Let 𝜑 = {𝑥0,… , 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1,… , 𝑥𝑗−1, 𝑥𝑗 , 𝑥𝑗+1,… , 𝑥𝑚} be a
solution with 𝑚 selected customers. Swapping 𝑥𝑖 and 𝑥𝑗 (0 < 𝑖 < 𝑗 ≤
𝑚) leads to a neighboring solution 𝜑′ = {𝑥0,… , 𝑥𝑖−1, 𝑥𝑗 , 𝑥𝑖+1,… , 𝑥𝑗−1,
𝑥𝑖, 𝑥𝑗+1,… , 𝑥𝑚}. As the set of selected customers is not changed, we
only calculate the change of the accumulated distance. By Eq. (3), the
change of objective value 𝛥𝑓 = 𝑓 (𝜑′) − 𝑓 (𝜑) can be easily calculated as
follows.

(1) If 𝑥𝑖 and 𝑥𝑗 are not adjacent, then

𝛥𝑓 = (𝑚 − 𝑖 + 1) ⋅ (𝑑𝑥𝑖−1 ,𝑥𝑖 − 𝑑𝑥𝑖−1 ,𝑥𝑗 ) + (𝑚 − 𝑖) ⋅ (𝑑𝑥𝑖 ,𝑥𝑖+1 − 𝑑𝑥𝑗 ,𝑥𝑖+1 )

+ (𝑚 − 𝑗 + 1) ⋅ (𝑑𝑥𝑗−1 ,𝑥𝑗 − 𝑑𝑥𝑗−1 ,𝑥𝑖 ) + (𝑚 − 𝑗) ⋅ (𝑑𝑥𝑗 ,𝑥𝑗+1 − 𝑑𝑥𝑖 ,𝑥𝑗+1 )

(2) If 𝑥𝑖 and 𝑥𝑗 are adjacent, then

𝛥𝑓 = (𝑚 − 𝑖 + 1) ⋅ (𝑑𝑥𝑖−1 ,𝑥𝑖 − 𝑑𝑥𝑖−1 ,𝑥𝑗 ) + (𝑚 − 𝑗) ⋅ (𝑑𝑥𝑗 ,𝑥𝑗+1 − 𝑑𝑥𝑖 ,𝑥𝑗+1 )

In other words, 𝛥𝑓 for any neighboring solution can be obtained in
𝑂(1). As a result, the complexity of exploring the 𝑁1 neighborhood is
𝑂(𝑚 ⋅ 𝑙𝑛𝑓 ).

Finally, there may exist several nodes in the solution whose col-
lected revenues 𝑝𝑥𝑖 − 𝑙(𝑥𝑖) are negative during the search process while
Eq. (3) only considers non-negative profits. To eliminate this difficulty,
we implement a local optimization based on the 𝐷𝑟𝑜𝑝 operator after
applying local search with other neighborhoods (See lines 12 and
16 in Algorithm 3). It is worth noting that dropping the nodes with
negative revenues always leads to a solution of better or equal quality
(see Proof ). This explains why applying the 𝐷𝑟𝑜𝑝 operator within
the descent local search (only accepting better solutions) is able to
eliminate the nodes with negative revenues efficiently.

Proof. Given a graph 𝐺(𝑉 ,𝐸) in the Euclidean space, we have a
feasible solution

𝜑 = {𝑥0, 𝑥1, 𝑥2,… , 𝑥𝑗−1, 𝑥𝑗 , 𝑥𝑗+1,… , 𝑥𝑚}

where the collected revenue at the node 𝑥𝑗 is negative (𝑝𝑥𝑗 − 𝑙(𝑥𝑗 ) < 0).
Deleting the node 𝑥𝑗 , a new solution 𝜑′ is obtained.

𝜑′ = {𝑥0, 𝑥1, 𝑥2,… , 𝑥𝑗−1, 𝑥𝑗+1,… , 𝑥𝑚}

According to Eq. (1), we get

𝑓 (𝜑′)−𝑓 (𝜑) =
𝑖=𝑚
∑

𝑖=𝑗+1
(
[

𝑝𝑥𝑖 − 𝑙(𝑥𝑖) + 𝛿
]+

−
[

𝑝𝑥𝑖 − 𝑙(𝑥𝑖)
]+

)−
[

𝑝𝑥𝑗 − 𝑙(𝑥𝑗 )
]+

≥ 0

where
[

𝑝𝑥𝑗 − 𝑙(𝑥𝑗 )
]+

equals 0 (because 𝑝𝑥𝑗 − 𝑙(𝑥𝑗 ) < 0) and 𝛿 = 𝑤𝑥𝑗−1 ,𝑥𝑗 +
𝑤𝑥𝑗 ,𝑥𝑗−1 −𝑤𝑥𝑗−1 ,𝑥𝑗+1 is non-negative due to the triangle inequality in the
Euclidean space. Therefore, dropping the nodes with negative revenues
leads to a solution of better or equal quality.

4 𝐼𝑛𝑡𝑒𝑟-𝑆𝑤𝑎𝑝 denotes the operation by exchanging a selected customer with
n unselected customer. However, Pei et al. (2020) named it as 𝑆𝑤𝑎𝑝 in their
ork. Here, we call it 𝐼𝑛𝑡𝑒𝑟-𝑆𝑤𝑎𝑝 to distinguish itself from 𝑆𝑤𝑎𝑝 in our work.
5

p

2.3.3. K-exchange sampling based neighborhood
This section presents a new neighborhood – the K-exchange sam-

pling (KES) neighborhood 𝑁𝑘𝑒𝑠, which is constructed by the solutions
randomly sampled from the 𝐾-exchange neighborhood.5 To efficiently
explore 𝑁𝑘𝑒𝑠, we also propose a corresponding 𝐾𝐸𝑆 heuristic, which is
inspired by the popular 𝐿𝐾 heuristic (Lin, 1965). The main difference
between 𝐾𝐸𝑆 heuristic and 𝐿𝐾 heuristic is stated as follows. With the
four criterion,6 the 𝐿𝐾 heuristic efficiently explores the complete 𝐾-
exchange neighborhood to obtain the best solution in the neighborhood
(𝐾-opt). On the contrary, our 𝐾𝐸𝑆 heuristic does not target the opti-
mality of the found solution and only samples at random a portion of
the solutions from the 𝐾-exchange neighborhood.

We describe now the KES heuristic for exploring 𝑁𝑘𝑒𝑠. Starting
from a random node, the KES heuristic successively swaps pairs of
dges between the nodes until an improving solution is found or the
aximum number of swaps 𝐾 (𝐾 is a parameter) is reached. This
rocedure is called one ‘simulation’. The KES heuristic repeats the
imulation until no improvement is reached during 𝑚 ⋅ 𝑑𝑙 successive
imulations, where 𝑚 is the number of selected customers and 𝑑𝑙 is a

parameter called ‘exploration limit’. In our work, the nodes for an edge
swap with respect to customer 𝑥𝑖 are restricted to the candidate set
𝑆𝑘𝑒𝑠(𝑥𝑖). The parameters 𝑑𝑙 and 𝐾 are determined in Section 3.2.

Fig. 2 illustrates the process of the KES heuristic on a 20-customer
raph, with an initial solution 𝜑𝑎 shown in Fig. 2(a). The maximum

number of swaps 𝐾 is set to 3 and the parameter 𝑑𝑙 is set to 5. A
imulation starts by selecting a random node from the solution (node
4 marked in blue in Fig. 2(a)) and the connection between 𝑥4 and 𝑥5 is
roken. Here, we call the node to seek for new connection as the target
ode (𝑥5). The KES heuristic repeats the following four steps.

(1) ‘Identify’: We identify the candidate set of the target node. In
Fig. 2(a), the candidate set for the target node 𝑥5 is given by
𝑆𝑘𝑒𝑠(𝑥5) = {𝑥8, 𝑥11, 𝑥16} marked in orange (the candidate set is
determined by the input graph).

(2) ‘Choose’: We randomly choose a node from the candidate set of
the target node. In this example, we choose 𝑥8.

(3) ‘Swap’: We swap the edges between the two pair of nodes. From
Fig. 2(a) to Fig. 2(b), we break the connection between 𝑥7 and 𝑥8
and reconnect 𝑥5 and 𝑥8 as well as 𝑥4 to 𝑥7 to get a new solution
𝜑𝑏.

(4) ‘Evaluate’: We evaluate the new solution to determine whether
we continue this simulation. If 𝜑𝑏 is better than 𝜑𝑎 in terms of the
objective value, 𝜑𝑏 replaces solution 𝜑𝑎, this simulation is ended,
and a new simulation is started with the newly obtained solution.
Otherwise, we repeat the above procedure using the new target
node 𝑥7 based on the intermediate solution in Fig. 2(c).

Following the same rule, we reconnect 𝑥7 and 𝑥13 (one candidate
node of 𝑥7 marked in orange in Fig. 2(c)) to get a temporary solution
in Fig. 2(d). We repeat the same procedure and reconnect 𝑥12 and 𝑥18
o get the solution in Fig. 2(e). Here we performed three edge swaps
nd reached the maximum number 𝐾. Hence we reconnect 𝑥4 and 𝑥17
nd finish this simulation.

Following the step of ‘Evaluate’, if the solution 𝜑𝑓 in Fig. 2(f) is
etter than the original solution 𝜑𝑎, it is recorded and a new simulation
s stimulated based on the solution 𝜑𝑓 . Otherwise, we restart a new
imulation from the original solution 𝜑𝑎. The maximum number of
imulations is equal to 𝑚 ⋅ 𝑑𝑙 = 20 ⋅ 5 = 100 where 𝑚 represents the
umber of selected customers. The KES heuristic stops when there is
o improvement over 100 successive simulations.

More explanations about the differences between the 𝐿𝐾 heuristic
nd the KES heuristic are given in Section 2.5.

5 The 𝐾-exchange neighborhood consists of the solutions by replacing at
ost 𝐾 edges from the current solution.
6 They are the sequential exchange criterion, the feasibility criterion, the

ositive gain criterion and the disjunctivity criterion (Helsgaun, 2000).
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Fig. 2. Illustration of the KES heuristic on a 20-customer graph.
2.4. Concise perturbation

After EVNS, a concise perturbation phase is used to help the search
escape from the deep local optimum. As explained in Section 2.1, the
perturbation operates either on the current solution 𝜑 or the best found
solution 𝜑∗ according to the dedicated rule. To perform the perturba-
tion, we apply 𝐼𝑛𝑠𝑒𝑟𝑡 and 𝐴𝑑𝑑 to transform the chosen solution. We
firstly execute the 𝐼𝑛𝑠𝑒𝑟𝑡 operation 𝑝1 times by randomly choosing a
customer 𝑥𝑟 from the set of the visited customers and inserting it to a
random position. Then we apply the 𝐴𝑑𝑑 operator 𝑚𝑖𝑛(𝑝2, |𝑉 | − |𝑉𝑠|)
times by adding at each time an unselected customer 𝑥𝑖 ∈ 𝑉 ⧵ 𝑉𝑠 to
the position behind a random vertex 𝑥𝑗 ∈ 𝑉𝑠 ∩ 𝑆𝑛𝑓 (𝑥𝑖) where 𝑉𝑠 is the
set of selected customers. 𝑝1 and 𝑝2 are two parameters determined in
Section 3.2. We also experimented other perturbation operations, but
this concise perturbation method proves to be the most suitable.

2.5. Novelties with respect to the existing algorithms

We discuss now the novelties of the proposed IDLS-TRPP algorithm
with respect to the existing TRPP methods.

First, the IDLS-TRPP algorithm uses the intensification mechanism
introduced in Section 2.1 to ensure an intensified exploration of every
elite solution encountered during the search. This mechanism uses the
latest best solution as the search center and explores multiple search
directions by repetitively launching the underlying EVNS procedure
from this center. This strategy enables IDLS-TRPP to find additional
high-quality solutions that may be missed by conventional local search
methods.

Second, like the algorithms (Avci & Avci, 2017, 2019; Dewilde
et al., 2013; Lu et al., 2019; Pei et al., 2020) for solving the TRPP,
our algorithm also relies on the VNS framework to perform the local
optimization. The employment of the candidate lists helps our algo-
rithm to explore the neighborhoods more efficiently compared to the
main reference algorithm (Pei et al., 2020). The detailed comparisons
6

Table 1
Summary of the classical neighborhood structures as well as their complexities in Pei
et al. (2020) and the proposed algorithm, where 𝑛 depicts the number of customers, 𝑚
is the number of selected customers, ℎ is the number of consecutive customers in the
block for 𝑂𝑟-𝑜𝑝𝑡, and 𝑙𝑛𝑓 is the maximum size of the candidate set 𝑆𝑛𝑓 .

Neighborhood GVNS-TRPP (Pei et al., 2020) IDLS-TRPP

Employment Complexity Employment Complexity

𝑆𝑤𝑎𝑝 # – ! 𝑂(𝑚 ⋅ 𝑙𝑛𝑓 )
𝐼𝑛𝑠𝑒𝑟𝑡 ! 𝑂(𝑚2) ! 𝑂(𝑚 ⋅ 𝑙𝑛𝑓 )
2-𝑜𝑝𝑡 ! 𝑂(𝑚2) ! 𝑂(𝑚 ⋅ 𝑙𝑛𝑓 )
𝑂𝑟-𝑜𝑝𝑡 ! 𝑂(ℎ ⋅ 𝑚2) ! 𝑂(ℎ ⋅ 𝑚 ⋅ 𝑙𝑛𝑓 )
𝐼𝑛𝑡𝑒𝑟-𝑆𝑤𝑎𝑝 ! 𝑂((𝑛 − 𝑚) ⋅ 𝑚) # –
𝐴𝑑𝑑 ! 𝑂((𝑛 − 𝑚) ⋅ 𝑚) ! 𝑂((𝑛 − 𝑚) ⋅ 𝑚)
𝐷𝑟𝑜𝑝 ! 𝑂(𝑚) ! 𝑂(𝑚)

are listed in Table 1. Besides that, our EVNS procedure enhances
the exploration of four known neighborhoods (Swap, Insert, 2-opt and
Or-opt) by a 𝐾-exchange sampling based neighborhood 𝑁𝑘𝑒𝑠, which
was never applied in the literature for solving the TRPP. This generally
allows the algorithm to find still better solutions from the best local
optimum generated by the other neighborhoods.

It is worth mentioning that, we employ the newly introduced KES
heuristic instead of the 𝐿𝐾 heuristic to explore the 𝐾-exchange neigh-
borhood to avoid the high computational complexity of the 𝐿𝐾 heuris-
tic. Indeed, effective fast evaluation techniques applied in the TSP are
not applicable due to the potential negative profit nodes for the TRPP.
Hence, the 𝐿𝐾 heuristic has a high computational cost. On the contrary,
the KES heuristic is computationally advantageous since it only samples
partially the 𝐾-exchange neighborhood.

Finally, the TRPP algorithms in the literature explore each neigh-
borhood completely. By contrast, our algorithm utilizes the candidate
set strategy to reduce each neighborhood, which consequently increases
the computational efficiency of the algorithm.
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Table 2
Description and ranges of the parameters of IDLS-TRPP used for automatic parameter tuning with Irace (nez, Dubois-Lacoste, Pérez Cáceres, Birattari, &
Stützle, 2016).
Parameter Description Type Value range

𝑙𝑛𝑓 Maximum size of the candidate set 𝑆𝑛𝑓 Categorical {10, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 100, 200, 250}
𝑙𝑘𝑒𝑠 Maximum size of the candidate set 𝑆𝑘𝑒𝑠 Categorical {3, 5, 6, 10, 15, 20, 30, 35, 40, 45, 50, 60, 70}
𝐾 Maximum number of switching in 𝑁𝑘𝑒𝑠 Categorical {3, 5, 10, 15, 20, 30, 35, 40, 45, 50, 60, 70, 100}
𝑅 Radius of the bounded area Integer [0, 30]
𝑝1 Strength of the 𝐼𝑛𝑠𝑒𝑟𝑡 perturbation Integer [0, 30]
𝑝2 Strength of the 𝐴𝑑𝑑 perturbation Integer [0, 30]
𝑑𝑙 Exploration limit of 𝑁𝑘𝑒𝑠 Real [0.0, 15.0]
As we demonstrate in Section 3, the IDLS-TRPP algorithm integrat-
ng these features as well as the fast neighborhood evaluation tech-
iques from (Pei et al., 2020) bypasses existing methods on the popular
enchmark instances. In Section 4, we further verify experimentally the
ffectiveness of the new features of the proposed algorithm.

. Experimental results

This section aims to assess the performance of the proposed algo-
ithm. For this purpose, we perform computational experiments over
he benchmark instances in the literature and present comparisons with
he best TRPP algorithm.

.1. Experimental setup

Seven sets of 140 benchmark instances available in the literature are
sed, which include different numbers of customers (𝑛=10, 20, 50, 100,
00, 500 and 1000). Each set contains 20 instances.7 The first six sets
ere firstly introduced by Dewilde et al. (2013) based on graphs from
SPLIB, and the last set (with 1000 customers) was proposed by Pei
t al. (2020).

IDLS-TRPP was coded in the C++ programming language and com-
iled with the g++ 7.5.0 compiler and the optimization flag -O3.8 The
xperiments were performed on a computer with a 2.8 GHz AMD-
pteron-4184 CPU running Linux OS. Considering the stochastic nature
f the algorithm, IDLS-TRPP was independently executed 20 times on
ach instance with different random seeds. The cutoff-time 𝑇𝑚𝑎𝑥 (in
econds) per run is set to be the number of customers in accordance
ith the setting in Pei et al. (2020). Given that our 2.8 GHz computer

s slightly slower than the 3.2 GHz computer used in Pei et al. (2020).
his stopping condition can be considered to be fair for the comparative
tudy with respect to the main reference algorithm of Pei et al. (2020).

.2. Tuning of parameters

We used the Irace automatic algorithm configuration package (nez
t al., 2016) to determine a suitable setting for the parameters listed in
able 2, which also includes the range of values of each parameter. For
his tuning experiment, the maximum number of runs (tuning budget)
sed by Irace is set to 2000. From the instances of large size (𝑛=500
nd 1000), we selected a subset of 10 training instances which are
00.1, 500.6, 500.12, 500.16, 500.17, 1000.1, 1000.2, 1000.5, 1000.6
nd 1000.7. This experiment with Irace led to the following parameter
etting: 𝑙𝑛𝑓 = 25, 𝑙𝑘𝑒𝑠 = 5, 𝐾 = 10, 𝑅 = 2, 𝑝1 = 2, 𝑝2 = 1 and 𝑑𝑙 = 5.9,
hich was consistently used for all the experiments reported in this
aper. This parameter setting can also be considered to be the default
etting of the IDLS-TRPP algorithm.

7 These instances can be download from: https://github.com/thetopjiji/
RPP.

8 The source code will be made available on https://github.com/thetopjiji/
RPP upon the publication of this work.
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3.3. Comparisons with state-of-the-art algorithms

This section presents the computational results obtained by IDLS-
TRPP with respect to the reference algorithm GVNS-TRPP (Pei et al.,
2020) over the 140 benchmark instances. We used GVNS-TRPP as
the main reference, because the computational results reported in the
literature indicate that GVNS-TRPP clearly dominates all other TRPP
algorithms and holds the state-of-the-art results for the 140 instances.

Table 3 summarizes the results of IDLS-TRPP compared to GVNS-
TRPP over the seven sets of instances (better results are indicates in
bold). Column ‘Size’ describes the size of the instances in each set.
Columns ‘Best’, ‘Average’ and ‘Tavg’ (columns 2–4) indicate respec-
tively the best found results, average found results and average time
to attain the best objective value obtained by GVNS-TRPP (averaged
over the 20 instances in each set), while columns 5–7 depict the
same information for our IDLS-TRPP algorithm. The last column ‘𝑖𝑚𝑝’
presents the improvement in percentage of the best objective value
found by IDLS-TRPP over the best objective value of GVNS-TRPP. Note
that it is not meaningful to compare the computation time of two
algorithms if they do not report the same results (this is the case for
several sets of instances in our case). So timing information is provided
for indicative purposes only.

From Table 3, one observes that IDLS-TRPP is able to attain the best
results reported in the literature for the instances of small sizes (𝑛 =
10, 20, 50). For the remaining four sets of instances, IDLS-TRPP achieves
better results in terms of the average value of the best solutions
(column ‘Best’). Concerning the average results (column ‘Average’),
IDLS-TRPP performs better than GVNS-TRPP for the instances of large
sizes (𝑛 = 500, 1000), while the reverse is true for the instances with
𝑛 = 100, 200. Overall, IDLS-TRPP performs very well by updating 36
best-known solutions (only missing 9 best-known results) and matching
the best-known results for 95 other instances.

Table 4 gives the detailed results for the instances of small sizes
(𝑛=10, 20 and 50). The first column ‘Instance’ indicates the name of
each instance. For each instance, we list the optimal value in column
‘Opt’, the best found results of GVNS-TRPP in column ‘GVNS-TRPP’,
and the best found results of IDLS-TRPP in column ‘IDLS-TRPP’. From
these results, we find that both IDLS-TRPP and GVNS-TRPP are able
to attain the best-known solution for each instance very easily. These
instances are thus easy for both algorithms.

Tables 5 and 6 show the computational results of the compared
algorithms over the 100-customer and 200-customer instances. The
first two columns ‘Instance’ and ‘BestEver’ list the names of instances
and the best found values in the literature respectively. The next four
columns indicate respectively the best value (column ‘Best’), average
value of 20 runs (column ‘Average’), worst value (column ‘Worst’) and
average time to attain the best objective value of 20 runs (column
‘Time’) for the reference algorithm GVNS-TRPP. The following four
columns show the same information for IDLS-TRPP. The last column
‘𝛿’ gives the improvement of our algorithm compared to GVNS-TRPP,
in terms of the best found value. The row ‘Avg.’ lists the average value
of each column. Dominating best values are highlighted in bold, which
indicate improved best-known results (with the improvement indicated

by ‘𝛿’). From these tables, one observes that IDLS-TRPP and GVNS-TRPP

https://github.com/thetopjiji/TRPP
https://github.com/thetopjiji/TRPP
https://github.com/thetopjiji/TRPP
https://github.com/thetopjiji/TRPP
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Table 3
Overall results of IDLS-TRPP and the main reference algorithm GVNS-TRPP (Pei et al., 2020) on the seven sets of benchmark instances obtained under
the same execution time. The timing information of GVNS-TRPP for the three sets of small instances (𝑛 = 10, 20, 50) is unavailable.

Size GVNS-TRPP IDLS-TRPP 𝑖𝑚𝑝

Best Average Tavg Best Average Tavg

10 1785.70 1785.70 * 1785.70 1785.70 0.01 0
20 7965.80 7965.80 * 7965.80 7965.80 0.02 0
50 50382.90 50382.90 * 50382.90 50382.90 1.23 0
100 211879.40 211871.53 8.82 211879.70 211858.82 13.87 0.0001%
200 851445.80 851282.73 57.36 851452.20 851265.30 71.45 0.0008%
500 6637633.35 6622638.41 404.72 6639248.90 6627811.94 413.91 0.0243%
1000+ 13202607.26 13160262.98 931.58 13217678.58 13180951.73 957.84 0.1142%

Win/Match/Fail 36/95/9

[+] The result instance 1000.13 reported by GVNS-TRPP (Pei et al., 2020) is abnormal. For fair comparison, the averaged values here are the results
excluding this instance. More detailed information is presented in Table 8.
Table 4
Computional results of the instances with 𝑛 = 10, 20, 50. The optimal values of 10-customer and 20-customer instances were reported in Dewilde et al.
(2013). We use ‘Unk’ to indicate ‘Unknown optimal results’ for the 50-customer instances.

Instance 𝑛=10 𝑛=20 𝑛=50

Opt GVNS-TRPP IDLS-TRPP Opt GVNS-TRPP IDLS-TRPP Opt GVNS-TRPP IDLS-TRPP

1 2520 2520 2520 8772 8772 8772 Unk 50921 50921
2 1770 1770 1770 10174 10174 10174 Unk 52594 52594
3 1737 1737 1737 7917 7917 7917 Unk 52144 52144
4 2247 2247 2247 7967 7967 7967 Unk 45465 45465
5 2396 2396 2396 7985 7985 7985 Unk 45489 45489
6 1872 1872 1872 7500 7500 7500 Unk 55630 55630
7 1360 1360 1360 9439 9439 9439 Unk 44302 44302
8 1696 1696 1696 7999 7999 7999 Unk 55801 55801
9 1465 1465 1465 6952 6952 6952 Unk 44964 44964
10 1014 1014 1014 8582 8582 8582 Unk 47071 47071
11 1355 1355 1355 7257 7257 7257 Unk 51912 51912
12 1817 1817 1817 6857 6857 6857 Unk 53567 53567
13 1585 1585 1585 7043 7043 7043 Unk 46830 46830
14 2122 2122 2122 6964 6964 6964 Unk 52665 52665
15 1747 1747 1747 6270 6270 6270 Unk 58856 58856
16 1635 1635 1635 8143 8143 8143 Unk 49754 49754
17 2025 2025 2025 10226 10226 10226 Unk 42525 42525
18 1783 1783 1783 7625 7625 7625 Unk 40536 40536
19 1797 1797 1797 7982 7982 7982 Unk 55346 55346
20 1771 1771 1771 7662 7662 7662 Unk 61286 61286
perform similarly in terms of each performance indicator (Best, Aver-
age, Worst). This is confirmed by the Wilcoxon signed rank test applied
to each pair comparison, leading to p-values superior to 0.05. However,
it is worth noting that our algorithm achieves five record-breaking
results (new lower bounds) including one 100-customer instance and
four 200-customer instances (indicated by a positive ‘𝛿’ value).

Tables 7 and 8 show the comparative results of IDLS-TRPP and
GVNS-TRPP for the sets of 500-customer and 1000-customer instances,
respectively. In addition to the same quality information as before
(Best, Average, Worst), the last row ‘p-value’ reports the results of
the Wilcoxon signed rank test applied to the pair of values of each
quality indicator. The dominating values for each quality indicator are
indicated in bold.

From Tables 7 and 8, one observes that our algorithm globally
dominates GVNS-TRPP for these large instances. For the 20 instances
with 500-customers, IDLS-TRPP finds 15 new best solutions, even if
it performs worse than GVNS-TRPP for the five remaining instances.
The Wilcoxon signed rank test (𝑝-value < 0.05) confirms that IDLS-
TRPP performs significantly better than GVNS-TRPP in terms of the best
objective value for this set of instances. As to the average and worst
results, the global Avg. values indicate a better performance of IDLS-
TRPP compared to GVNS-TRPP with statistically significant differences
(p-values < 0.05).

Very similar observations can be made for the set of 20 largest in-
stances with 1000-customers for which 16 new record-breaking results
are reached. From row ‘Avg.’, one observes that IDLS-TRPP dominates
GVNS-TRPP in terms of the best, average and worst results, which are
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confirmed by the corresponding Wilcoxon signed rank test (𝑝-value
< 0.05).

The dominance of IDLS-TRPP over GVNS-TRPP for these two sets of
large instances in terms of each quality indicator is confirmed by the
small p-values (< 0.05) from the Wilcoxon signed rank tests. Finally, it
is interesting to observe that these improved results can be obtained
by IDLS-TRPP with only a small increase of the computation time
compared to the time required by GVNS-TRPP.

This experiment demonstrates the particular usefulness of the pro-
posed algorithm for solving large and challenging TRPP instances, even
if it performs very well on instances of smaller sizes as well.

4. Analysis of the key components

This section experimentally investigates the influences of two key
components of the proposed algorithm: the intensification strategy
introduced (Section 2.1) and the 𝐾𝐸𝑆 heuristic (Section 2.3.3). For
these experiments, we focus on the more challenging instances with
200 and more customers. All the algorithmic variants tested in this
section were run with the setup in Section 3.1 and their results are
compared with the results of IDLS-TRPP reported in Table 3.

4.1. Influence of the intensification-driven mechanism

As explained in Section 2.1, the IDLS-TRPP algorithm uses an inten-
sification mechanism inspired by the DGLS method introduced in Po-
rumbel and Hao (2020) to intensively explore surrounding areas of each
elite solution. This section experimentally investigates the influence
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Table 5
Experimental results of the proposed algorithm IDLS-TRPP and the main reference algorithm GVNS-TRPP over the set of 100-customer instances. The
results of column ‘BestEver’ are collected from the literature (Avci & Avci, 2017, 2019; Dewilde et al., 2013; Lu et al., 2019; Pei et al., 2020).

Instance BestEver GVNS-TRPP IDLS-TRPP 𝛿

Best Average Worst Time Best Average Worst Time

100.1 209952 209952 209952.00 209952 1.89 209952 209952.00 209952 2.32 0
100.2 196318 196318 196313.00 196268 22.92 196318 196296.10 196268 24.62 0
100.3 211937 211937 211937.00 211937 5.15 211937 211937.00 211937 6.56 0
100.4 217685 217685 217685.00 217685 2.14 217685 217685.00 217685 6.85 0
100.5 215119 215119 215119.00 215119 5.52 215119 215035.00 214879 6.93 0
100.6 228687 228687 228687.00 228687 2.23 228687 228687.00 228687 6.51 0
100.7 200064 200064 200064.00 200064 6.36 200064 200063.20 200056 25.33 0
100.8 205760 205760 205760.00 205760 8.93 205760 205715.75 205583 14.62 0
100.9 226240 226240 226240.00 226240 0.79 226240 226240.00 226240 6.26 0
100.10 218202 218202 218202.00 218202 1.19 218202 218202.00 218202 7.24 0
100.11 212503 212503 212442.00 212381 5.17 212503 212480.80 212392 30.45 0
100.12 222249 222249 222249.00 222249 2.25 222249 222249.00 222249 8.27 0
100.13 206957 206957 206957.00 206957 0.99 206957 206957.00 206957 10.73 0
100.14 215690 215690 215690.00 215690 2.41 215690 215690.00 215690 5.32 0
100.15 214041 214041 214041.00 214041 16.40 214041 213990.10 213531 30.28 0
100.16 214036 214036 213976.80 213740 13.89 214036 213929.05 213673 24.16 0
100.17 223636 223636 223635.85 223633 25.70 223642 223641.50 223640 10.44 6
100.18 192849 192849 192849.00 192849 4.47 192849 192849.00 192849 6.98 0
100.19 206755 206755 206723.00 206627 20.62 206755 206741.20 206607 24.65 0
100.20 198908 198908 198908.00 198908 27.42 198908 198835.75 198693 18.86 0

Avg. 211879.40 211879.40 211871.53 211849.45 8.82 211879.70 211858.82 211788.50 13.87

p-value 3.17×10−1 9.26×10−2 2.84×10−2
Table 6
Experimental results of the proposed algorithm IDLS-TRPP and the main reference algorithm GVNS-TRPP over the set of 200-customer instances. The
results of column ‘BestEver’ are collected from the literature (Avci & Avci, 2017, 2019; Dewilde et al., 2013; Lu et al., 2019; Pei et al., 2020).

Instance BestEver GVNS-TRPP IDLS-TRPP 𝛿

Best Average Worst Time Best Average Worst Time

200.1 877610 877610 877410.10 876549 62.46 877610 877400.65 876550 66.78 0
200.2 901898 901898 901495.70 901184 45.68 901927 901472.25 900516 71.02 29
200.3 888393 888393 888393.00 888393 22.06 888393 888393.00 888393 42.37 0
200.4 873910 873910 873812.60 873467 64.70 873910 873706.50 873424 79.28 0
200.5 849358 849358 849186.65 848111 37.10 849358 849000.80 847939 54.74 0
200.6 816928 816928 816916.65 816910 67.05 816928 816914.50 816909 99.39 0
200.7 784120 784120 784109.20 784059 65.02 784120 784109.35 784012 91.62 0
200.8 838026 838026 837888.05 837075 71.34 838100 837919.35 837208 75.62 74
200.9 891203 891203 891030.65 890637 42.33 891203 891072.10 890637 55.51 0
200.10 847303 847303 847019.15 845931 56.12 847308 846958.80 845899 83.91 5
200.11 804851 804851 804543.60 804087 43.27 804851 804651.85 804372 74.06 0
200.12 808966 808966 808905.20 808293 34.86 808966 808820.30 808071 33.92 0
200.13 861749 861749 861674.70 861006 64.87 861749 861642.00 861006 86.19 0
200.14 850601 850601 850588.70 850509 77.25 850621 850551.45 850397 77.73 20
200.15 848006 848006 847832.10 846711 76.62 848006 847643.35 846662 77.14 0
200.16 854075 854075 853813.70 852452 49.50 854075 853880.10 853099 82.44 0
200.17 861747 861747 861491.05 860397 58.80 861747 861471.35 861117 65.03 0
200.18 842953 842953 842720.30 841618 86.46 842953 842653.20 841742 87.83 0
200.19 822881 822881 822708.75 821919 60.00 822881 822735.90 821664 71.40 0
200.20 904338 904338 904114.75 903132 61.66 904338 904309.20 904295 53.08 0

Avg. 851445.80 851445.80 851282.73 850622.00 57.36 851452.20 851265.30 850695.60 71.45

p-value 6.79×10−2 3.34×10−1 9.25×10−1
of this mechanism over the performance of IDLS-TRPP. For this pur-
pose, we create an algorithmic variant ILS-TRPP by setting the search
depth limit 𝑅 to a very high value and keeping the other IDLS-TRPP
components unchanged (i.e., lines 16–18 of Algorithm 1 will not be
executed). Doing this disables the intensification mechanism because
only one (long) iterated local search run instead of multiple bounded
local search runs will be launched from the elite solution.

Table 9 summarizes the comparative results between ILS-TRPP and
IDLS-TRPP with the same information as in Table 3 along with the
last column ‘p-values’ from the Wilcoxon signed rank test applied to
the best results of the compared algorithms for each set of instances.
One observes that IDLS-TRPP outperforms ILS-TRPP in terms of the best
and average results. The statistical significant difference in terms of the
best results of the compared algorithms for the three sets of instances is
confirmed by the small p-values < 0.05. This experiment demonstrates
9

the relevance of the intensification mechanism used by the IDLS-TRPP
algorithm.

Furthermore, to study the behaviors of the two compared algorithms
throughout the execution, we performed an additional experiment to
obtain the convergence charts (running profiles) of the algorithms
on four representative and difficult instances: two 500-customer in-
stances (500.1 and 500.2) and two 1000-customer instances (1000.1
and 1000.2). For this experiment, we ran each algorithm 20 times to
solve each instance with the time limit of 500 s (for 500-customer
instances) and 1000 s (for 1000-customer instances). The best objective
values are recorded during the executions.

Fig. 3 shows the convergence charts that indicate how the average
best objective value found of 20 runs by each algorithm (y-axis) evolves
as a function of the running time of the algorithm (x-axis). We observe
that both algorithms are able to attain good-quality solutions quickly
(within 50 s) but IDLS-TRPP has a better long-term performance.
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Table 7
Experimental results of the proposed algorithm IDLS-TRPP and the main reference algorithm GVNS-TRPP over the set of 500-customer instances. The
results of column ‘BestEver’ are collected from the literature (Avci & Avci, 2017, 2019; Dewilde et al., 2013; Lu et al., 2019; Pei et al., 2020).

Instance BestEver GVNS-TRPP IDLS-TRPP 𝛿

Best Average Worst Time Best Average Worst Time

500.1 6678468 6678468 6664032.05 6651139 409.43 6679339 6666525.45 6655224 400.79 871
500.2 6463424 6463424 6449712.40 6433960 393.78 6464121 6452465.40 6441483 443.56 697
500.3 6425689 6425689 6410715.05 6399450 386.31 6432179 6421381.95 6400056 405.62 6490
500.4 6678804 6678804 6668202.20 6648148 368.07 6679323 6673726.55 6667802 407.93 519
500.5 6841247 6841247 6829442.80 6812340 423.51 6846611 6832527.20 6820874 408.30 5364
500.6 6166077 6166077 6155034.80 6140340 410.65 6165804 6155572.35 6148208 417.51 −273
500.7 6823818 6823818 6800739.45 6779367 413.40 6825544 6811925.75 6799550 445.83 1726
500.8 6588450 6588450 6575473.35 6552773 408.05 6591982 6577867.45 6564889 379.76 3532
500.9 6627147 6627147 6613714.25 6599039 390.71 6630592 6622398.25 6611337 399.06 3445
500.10 6762936 6762936 6749197.65 6731296 432.28 6766107 6754708.45 6740732 439.04 3171
500.11 6793871 6793871 6775750.75 6756956 403.40 6794863 6783465.20 6770846 424.63 992
500.12 6543323 6543323 6527608.85 6511491 406.48 6539219 6532311.45 6520929 427.70 −4104
500.13 6426788 6426788 6411856.40 6391554 415.56 6429881 6416052.75 6404018 433.20 3093
500.14 6799091 6799091 6787843.90 6778724 380.59 6804111 6792957.15 6776421 411.06 5020
500.15 6820990 6820990 6804416.95 6786935 445.51 6823083 6808188.85 6792175 403.90 2093
500.16 6643189 6643189 6627300.95 6608062 424.06 6641958 6633700.50 6622930 376.53 −1231
500.17 6656804 6656804 6638537.50 6628560 404.32 6653016 6643332.25 6635151 405.76 −3788
500.18 6635000 6635000 6613361.55 6586965 368.04 6632732 6617651.95 6599206 402.90 −2268
500.19 6680645 6680645 6671727.90 6658717 392.94 6685770 6673627.35 6659688 411.35 5125
500.20 6696906 6696906 6678099.35 6661584 417.34 6698743 6685852.55 6666850 433.79 1837

Avg. 6637633.35 6637633.35 6622638.41 6605870.00 404.72 6639248.90 6627811.94 6614918.45 413.91

p-value 3.33×10−2 8.86×10−5 1.40×10−4
Table 8
Experimental results of the proposed algorithm IDLS-TRPP and the main reference algorithm GVNS-TRPP over the set of 1000-customer instances.

Instance BestEver (Pei et al., 2020) GVNS-TRPP IDLS-TRPP 𝛿

Best Average Worst Time Best Average Worst Time

1000.1 16037164 16037164 15974489.00 15909332 904.96 16036393 15995572.10 15970099 968.22 −771
1000.2 14442450 14442450 14405988.20 14382659 929.04 14458979 14429777.90 14392702 970.38 16529
1000.3 10924880 10924880 10885626.70 10831905 936.74 10938518 10906962.60 10879692 954.27 13638
1000.4 13418699 13418699 13370499.40 13345724 926.36 13436056 13387838.40 13331062 961.10 17357
1000.5 17050897 17050897 16999503.55 16962045 940.33 17053027 17022904.80 16992212 951.53 2130
1000.6 11803559 11803559 11750602.40 11707115 938.86 11792759 11765238.85 11731592 966.89 −10800
1000.7 12964458 12964458 12912944.25 12871634 920.78 12962632 12922063.95 12885054 962.51 −1826
1000.8 12572790 12572790 12534832.55 12484217 948.00 12585070 12544422.05 12500769 966.05 12280
1000.9 13938794 13938794 13871530.70 13810239 924.42 13954128 13911055.50 13832805 964.15 15334
1000.10 9962230 9962230 9917128.65 9871772 895.18 9967005 9934067.80 9875296 969.09 4775
1000.11 9242217 9242217 9211349.00 9166426 906.42 9261025 9229624.40 9206101 943.67 18808
1000.12 15124136 15124136 15086881.85 15038413 939.08 15136887 15099695.15 15057482 967.06 12751
1000.13a 15092052 15092052 15092052.00 15092052 993.81 10422643 10392569.50 10358825 966.57 −4669409
1000.14 11868317 11868317 11868317.00 11868317 1000.43 11908334 11867924.40 11835574 930.45 40017
1000.15 15767145 15767145 15728148.60 15682402 933.92 15784134 15739122.40 15698031 961.52 16989
1000.16 15140757 15140757 15100909.50 15060903 942.69 15161694 15112711.15 15042722 950.01 20937
1000.17 10175909 10175909 10145812.15 10135285 946.96 10215460 10186308.35 10153272 955.39 39551
1000.18 15059293 15059293 15014848.50 14989081 946.70 15094532 15068819.55 15033978 950.83 35239
1000.19 12385606 12385606 12340836.40 12314951 915.36 12410568 12375251.65 12325767 942.70 24962
1000.20 12970237 12970237 12924748.30 12887476 903.75 12978692 12938721.90 12889056 963.19 8455

Avg.b 13202607.26 13202607.26 13160262.98 13122099.79 931.58 13217678.58 13180951.73 13138592.95 957.84

p-value 5.39×10−4 1.55×10−4 1.00×10−2

aThe result of 15092052 for instance 1000.13 reported in Pei et al. (2020) is abnormal and wrong because it is larger than the upper bound of 14598152,
that is obtained by using Equation (3): 𝑓 (𝜑) = ∑𝑚

𝑖=0 𝑝𝑥𝑖 −
∑𝑚−1

𝑖=0 (𝑚 − 𝑖) ⋅ 𝑑𝑥𝑖 ,𝑥𝑖+1 ≤
∑𝑚

𝑖=1 𝑝𝑥𝑖 ≤
∑𝑛

𝑖=1 𝑝𝑖.
bThe average value of the best found results is the result by excluding the instance of 1000.13.
Table 9
Overall results obtained by ILS-TRPP and IDLS-TRPP.

Size ILS-TRPP IDLS-TRPP 𝑖𝑚𝑝 p-value

Best Average Tavg Best Average Tavg

200 851273.95 850882.72 100.29 851452.20 851265.30 71.45 0.0209% 8.84×10−5
500 6615207.85 6602084.57 231.79 6639248.90 6627811.94 413.91 0.3634% 8.86×10−5
1000+ 12987142.35 12944792.46 298.98 13077926.80 13041532.62 958.28 0.6990% 8.86×10−5

[+] The results here consider the experimental results obtained by the instance 1000.13, while Table 3 excludes the results of 1000.13 because of the
fair comparison with GVNS-TRPP.
10
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Fig. 3. Convergence charts (running profiles) of ILS-TRPP and IDLS-TRPP for solving four representative difficult instances (500.1, 500.2, 1000.1 and 1000.2). The results were
obtained from 20 independent executions of each compared algorithm.
Table 10
Overall results obtained by IDLS-TRPP-noKES and IDLS-TRPP over 60 benchmark instances within same execution time.

Size IDLS-TRPP-noKES IDLS-TRPP 𝑖𝑚𝑝 p-value

Best Average Tavg Best Average Tavg

200 851452.15 851201.23 78.88 851452.20 851265.30 71.45 0.0001% 6.55×10−1
500 6636032.05 6622711.91 373.34 6639248.90 6627811.94 413.91 0.0485% 4.85×10−3
1000+ 13030820.05 12985507.28 491.17 13077926.80 13041532.62 958.28 0.3615% 8.86×10−5

[+] The results here consider the experimental results obtained by the instance 1000.13, while Table 3 excludes the results of 1000.13 because of the
fair comparison with GVNS-TRPP.
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Indeed, ILS-TRPP generally begins to stagnate at its local optimum
solution after some 200 s, while IDLS-TRPP continues to improve its
solutions till the end of the time limit, showing a very favorable search
behavior. This experiment shows that the intensification mechanism
contributes favorably to the performance of the IDLS-TRPP algorithm.

4.2. Influence of the KES heuristic

To study the impacts of the KES heuristic on the performance of the
lgorithm, we created a variant IDLS-TRPP-noKES by disabling the KES
euristic (i.e., removing line 15 in Algorithm 3). We ran IDLS-TRPP-
oKES with the same experimental setting as in Section 3.1 to make
ure that both algorithms were performed using the same cutoff-time
or each tested instance.

Using the same column headings as Table 9, Table 10 shows that
DLS-TRPP significantly dominates IDLS-TRPP-noKES, especially on the
arge size instances (𝑛=500 and 1000), according to the Wilcoxon
igned rank tests. One can conclude that the KES heuristic contributes
ositively to the proposed algorithm and is especially useful for solving
nstances of large size (𝑛 > 200).

To further study the influence of the 𝑁𝑘𝑒𝑠 neighborhood on the local
ptimization procedure, we extract EVNS from IDLS-TRPP by deleting
he perturbation phase as well as the intensification mechanism, and
reate a variant: EVNS-noKES (disabling 𝑁𝑘𝑒𝑠).

A supplementary experiment was conducted using these variants
n 4 difficult and representative instances (500.1, 500.2, 1000.1 and
000.2). For this experiment, each instance was solved 100 times by
ach algorithm until no improving solution exists in the neighborhoods.
he best found solutions and the running time are recorded.
11

u

Fig. 4 summarizes the corresponding bar charts that describe how
he average objective values (y-axis in the left, blue bars) and average
unning time (y-axis in the right, red bars) differ between the two
ariants. One can observe that EVNS which combines the KES heuristic
ith other neighborhoods outperforms EVNS-NoKES in terms of the
est found solutions (blue bars) for all the cases. Although EVNS spends
ore time than EVNS-NoKES (e.g., 0.746 s vs 0.051 s for the instance
00.1), EVNS is able to obtain good-quality solutions which are never
chieved by EVNS-NoKES.

To summarize, EVNS combining the KES heuristic (which is pow-
rful but time-consuming) and other neighborhoods makes a good
rade-off between the computation time and solution quality. The
xperiments presented in this section confirm the positive role of the
ES heuristic on the algorithm performance.

. Conclusions

In this work, we presented an intensification-driven local search for
olving the traveling repairman problem with profits. This algorithm
ntegrates several innovative ingredients including the tree-like intensi-
ication mechanism inspired by the general DGLS framework (Porumbel

Hao, 2020), the 𝐾-exchange sampling neighborhood together with
he associated KES heuristic inspired by the Lin–Kernighan heuristic,
eighborhood reduction based on the candidate set strategy and fast
valuation techniques.

The experimental results over 140 benchmark instances showed that
he proposed algorithm performs remarkably well and in particularly
pdates the best-known results for 36 difficult instances. These new



Expert Systems With Applications 202 (2022) 117072J. Ren et al.

i
s
i
b
i

c
u
i
s
m

C

i
t
v
W

D

c
i

A

T
1
2
A
A
r
p

Fig. 4. Bar charts of EVNS and EVNS-noKES for solving four representative difficult instances (500.1, 500.2, 1000.1 and 1000.2). The results were averaged over 100 independent
executions of each compared algorithm.
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results will be useful to assess other TRPP algorithms. Additional exper-
iments demonstrated the positive roles of the intensification mechanism
and the 𝐾-exchange based heuristic to the algorithm performance.

Even if important progresses have been made in recent year for solv-
ng the TRPP, this work shows that improvements are still possible with
imple and effective ideas. This work also demonstrates the potential
nterest of the DGLS framework (Porumbel & Hao, 2020), which can
oost an underlying local search algorithm with the help of a tree-like
ntensification mechanism.

Given that the TRPP has a number of practical applications, the
ode of our algorithm that we will make publicly available can be
sed to solve some of these applications. The proposed algorithm or
ts components can also be integrated into more sophisticated methods
uch as hybrid evolutionary algorithms to build more powerful solution
ethods for this challenging problem.
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