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Abstract— The capability of humanoid robots to generate
facial expressions is crucial for enhancing interactivity and
emotional resonance in human-robot interaction. However,
humanoid robots vary in mechanics, manufacturing, and ap-
pearance. The lack of consistent processing techniques and
the complexity of generating facial expressions pose significant
challenges in the field. To acquire solutions with high confidence,
it is necessary to enable robots to explore the solution space
automatically based on performance feedback. To this end,
we designed a physical robot with a human-like appearance
and developed a general framework for automatic expression
generation using the MAP-Elites algorithm. The main advan-
tage of our framework is that it does not only generate facial
expressions automatically but can also be customized according
to user preferences. The experimental results demonstrate
that our framework can efficiently generate realistic facial
expressions without hard coding or prior knowledge of the
robot kinematics. Moreover, it can guide the solution-generation
process in accordance with user preferences, which is desirable
in many real-world applications.

I. INTRODUCTION

Daily nonverbal communication mainly relies on facial ex-
pressions [1], [2]. Comparing with body language and voice
tone, facial expressions are more effective in conveying
attitudes and feelings, accurately interpreting and describing
the emotions and intentions [3]–[5]. In practice, using a
human face to portray humanoid robots makes them more ap-
pealing because it allows the interlocutor to learn more about
their characteristics or behaviors [7], [8]. Mimicking facial
expressions implies that individuals can visually encode
and transfer facial expressions to facial muscle movements.
However, facial mimicry [13]–[19] is merely the beginning of
adaptive facial reactions. Generally, the ability of humanoid
robots to generate facial expressions automatically and pro-
vide emotional information can enhance interactivity and
emotional resonance [9]–[11], potentially leading to positive,
long-term human-robot partnerships [9], [11], [12].

Humanoid robots usually have diverse mechanical com-
ponents and appearances, resulting in different abilities to
generate facial expressions. To date, few generic learning
frameworks handle nonlinear mapping between motor move-
ments and facial expressions. Among them, predetermining
a set of facial expressions is the most straightforward and
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Fig. 1. Humanoid Robot Head. The basic idea is to use the MAP-Elites
algorithm [58] to search the high-dimensional solution space for candidates
that match performance criteria in the low-dimensional feature space.
The dimension of variation of interest depends on the facial expression-
generating mechanism. The algorithm reveals each region’s fitness potential
and the trade-off between performance and preferences.

efficient approach [16], [18]–[27]. Other approaches try to
generalize by searching for the closest match [28], [29]
or using the fitness function [30], [31]. Although these
methods can generate realistic facial expressions, they tend
to be excessively artificial, restricting their applicability and
significance in real-world human-robot interactions.

Against this background, we developed a humanoid robot
head with an anthropomorphic appearance, as shown in Fig.
1. Based on this, we proposed a general learning framework
that utilizes MAP-Elites [58] for automatically generating
specified facial expressions. Our framework suits humanoid
robots with various external appearances and internal mech-
anisms. It consists of an expression recognizer, a MAP-
Elites module, servo drivers, and an intermediate information
processing (IIP) module. The main functions of the IIP mod-
ule are as follows. It first receives candidate solutions from
the MAP-Elites module, based on the specified expression
category and user preferences. Then, it converts these into
actual motor commands, which the robot can recognize and
execute on the physical robot. After that, it receives the
facial attributes from the expression recognizer and gives
feedback to the MAP-Elites module. The experiments show
that our method outperforms both predefined facial expres-
sion methods and facial mimics. Most importantly, the hu-
manoid robot effectively explores potential solutions that can
generate specified facial expressions and guides the solution-
generation process according to the user preferences.

Our main contributions are twofold. Firstly, we developed
an anthropomorphic robot head with sophisticated inter-
nal mechanisms. Secondly, we proposed a general learning
framework based on the MAP-Elites algorithm for automatic
facial expression generation. In more detail, our approach
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does not require human intervention or prior knowledge of
kinematics since it only relies on the movement range of each
motor of a humanoid robot and its constraint relationships.
Hence, it can be directly applied to other humanoid robot
designs. To the best of our knowledge, this is the first work
enabling humanoid robots to generate facial expressions with
user’s preferences automatically.

The rest of the paper is structured as follows. Section
II briefly reviews the related work. Sections III, IV, and
V describe the hardware design, the algorithm framework,
and the method evaluation, respectively. Finally, Section VI
concludes the paper and discusses potential future research.

II. RELATED WORKS

A. Dynamic Facial Animation

Customized dynamic avatars match the user’s geometric
shape, physical appearance, and dynamic facial expressions
in various situations. Data-driven approaches are frequently
employed to create dynamic avatars since they deliver
realistic facial expressions at a low computational cost.
Tracking RGB-D videos allows real-time linear modeling
of blendshape models’ dynamic geometry [35], [36]. High-
end production utilizes special hardware configurations to
create photorealistic, dynamic avatars with fine-grained skin
details [37]. Jimenez et al. [38] calculated the appearance of
the dynamic skin by combining the hemoglobin distributions
acquired during various facial expressions. Saragih et al. [39]
proposed a real-time facial puppet system in which a non-
rigid tracking system captures the user’s facial expressions.

Cao et al. [40] proposed a calibration-free technique for
real-time facial tracking and animation by a single camera
based on alternating regression steps to infer accurate 2D
facial landmarks and 3D facial shapes for 2D video frames.
Cao et al. [41] presented a real-time high-fidelity facial
capture approach that improves the global real-time facial
tracker, which produces a low-resolution facial mesh, by
augmenting details such as expression wrinkles with local
regressors. Yan et al. [42] first extracted the AUs (action
units) values of the 2D video frames, which were then
utilized as blendshape coefficients to animate a digital avatar.
X2Face [43] and Face2Face [44] proposed to animate the
target video’s facial expressions by the source actor and re-
render the output video with photorealism.

Prior research primarily focused on realistic video ren-
dering instead of an application to physical robots. Complex
internal architecture, constrained degrees of freedom, flexible
skin, and actuation mechanisms make applying dynamic face
animation to a physical robot much more challenging [30].

B. Physical Humanoid Robot

The cognitive theory [3], [32]–[34] and dimensional theory
[45], [46] are the two primary, distinct perspectives on mod-
eling emotions. The cognitive theory categorizes emotions
into six basic expressions, while the dimensional theory
describes emotions as multiple points in a multidimensional
space [55], [56]. These viewpoints serve as theoretical

guidelines for humanoid robots’ structural design and facial
expression generation.

Researchers have conducted numerous studies using cog-
nitive theory. Loza D et al. [47] presented a realistic me-
chanical head that considers a number of micro-movements
or AUs. Controlling and combining the matching micro-
expressions is a control system that determines the force and
velocity of each AU. Implementing all AUs would cause a
very complicated, difficult-to-parameterize, and impractical
mechanical head, which already exists in the reduced version
of particular procedures. Consequently, [19], [20], [22], [25],
[48] proposed systematic frameworks that identify human
facial expressions or emotional categories of sentences and
use the faces of humanoid robots to deliver predetermined
facial expressions. Similarly, [22], [26], [27], [49]–[51] de-
veloped robot heads with varying appearances and executed a
predetermined set of facial expressions or searched databases
for the closest match to a particular category of expres-
sions. Berns K et al. [29] used a behavior-based robot
head ROMAN control system to generate fundamental facial
expressions such as happiness, sadness, and surprise.

Lee et al. [52]–[54] presented a linear affect-expression
spatial model that efficiently controls the expressions of
mascot-type robots, allowing for continuous changes and
diverse facial characteristics. Moreover, they provided a
modeling approach for a three-dimensional linear emotional
space based on the basic observation matrix of expressions
(BOME), which generates successive expressions from ex-
pression data. A Markovian Emotion Model (MEM) was
also presented for human-robot interaction, which uses the
distance between emotions determined by self-organizing
map (SOM) classification to define the initial state transition
probability of the MEM [23], [48]. Kanoh M. et al. [24]
sought to extract expression characteristics of the robot Ifbot
and map them into emotional space. In addition, they pro-
posed a method for transforming facial expressions smoothly
by utilizing emotional space.

All the approaches above primarily rely on predetermined
facial expressions or considerable manual labor, and have
limited generalizability. Hyung et al. [30] presented a system
to automatically generate facial expressions, which is most
related to our work. However, their generation process is less
efficient, and the outputs are uncontrollable. Therefore, it
cannot generate facial expressions based on user preference.

III. HARDWARE DESIGN

The internal movement structure is designed with reference
to FACS [3] and the characteristics of human facial mus-
cle movements. Our hardware design is predicated on an
anthropomorphic image so that people can recognize the
robot’s facial expressions more intuitively and consistently.
Facial actuation points are driven by servo motors, with one
FEETECH SM60L for mouth actuation, four KST X08H
Plus for the eyeballs, and additional twelve ones for the
remaining actuation points. The robot’s internal connections
and skull are made by 3D printing to increase availability and
reduce cost. The facial expressions of the robot are captured
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Fig. 2. Hardware Design. The flexible skin is attached to the robot’s
internal connections with snap fasteners. An RGB camera is deployed to
capture pictures of the face as the robot executes the generated motor
commands. Given the pictures, the current facial performance is evaluated.

TABLE I
CORRESPONDENCES BETWEEN ORIGINAL AND REDEFINED AUS

AU No. Original Descriptions New Descriptions
1 Inner Brow Raiser AU1, Brow Raiser2 Outer Brow Raiser
4 Brow Lowerer AU2, Brow Lowerer
5 Upper Lid Raiser AU3, Upper Lid Raiser
6 Cheek Raiser AU4, Cheek Raiser

12 Lip Corner Puller AU5, Lip Corner Puller
27 Mouth Stretch/Jaw Drop AU6, Mouth Open

using an ordinary camera. A summary of our hardware
design is depicted in Fig. 2.

A. Representation of Facial Expressions

The original action units (AUs) described in FACS show
the different movements of facial muscles. The collection of
certain AUs provides information about which expression
being displayed. For example, “Happiness” is calculated
from the combination of AU6 (cheek raiser) and AU12 (lip
corner puller). However, it is not necessary for all AUs to
occur simultaneously in order to generate a certain facial
expression. For instance, when AU1, AU2, and AU5 emerge
concurrently, faces are recognized as expression “Surprise”
with high likelihood. In this work, we term them strong
associated AUs, and the rest are weak correlated AUs.

The amplitude of movement of each servo motor is em-
pirically utilized to calculate the movement of each AU
necessary for each facial expression. To align with the
requirements of our algorithm, we have re-described and
re-interpreted the description of AUs in FACS due to the
specific hardware structure and limitations of servo motions.
As shown in Table I, the new descriptions are the AUs that
our robot implements.

B. Face Movement Module

We use Smooth-On Ecoflex-0030 to manufacture flexible
facial skin attached to the robot’s skull with silicone rubber
adhesive (Smooth-On Sil-Poxy). The facial actuation points
are connected to it with snap fasteners. The silicone is 2mm
thick to ensure that all non-linear actuation point movements

Algorithm 1 MAP-Elites [58]
P ← ∅, X ← ∅
for iter = 1 → I do

if iter < G then
x′ ← random solution()

else
x ← random selection(X )
x′ ← random variation(x)

end if
b′ ← feature descriptor(x′)
p′ ← performance(x′)
if P(b′) = ∅ ∨ P(b′) > p′ then

P(b′) ← p′, X (b′) ← x′

end if
end for
return P and X

are reflected in the flexible skin. To simplify angular transfor-
mation and control, we standardize the movement range of
servo motors to [0, 1]. All the servo motors move in different
directions and intensities across a multidimensional space.

IV. MAIN FRAMEWORK
We proposed a general learning-based framework for auto-
matically generating facial expressions based on user prefer-
ences and expression categories. Fig. 3 depicts an overview
of our learning framework. Without prior knowledge of
kinematics and manual pre-programming of various facial
expressions, we expect the learning framework to generate
facial expressions that match human perception.

To automate the generation process, utilizing the current
mature and reliable expression recognizer to deliver high-
performance evaluations is crucial, ensuring more accurate
outcomes. According to our knowledge, no prior study has
explicitly addressed the use of a mature and stable interface
for effectively identifying facial expressions by utilizing
affect space [45], [46]. Therefore, we use the generic expres-
sion recognition interface, which is provided by the official
face++ website [66], to recognize facial expressions more
precisely and acquire the corresponding facial attributes.

Considering the inefficiency of the hard-coding approach
and the strong correlation between the robot’s facial expres-
sions and mechanical structure, generating facial expressions
requires a good exploration of the solution space while
implicitly preserving diversity. In this paper, we proposed
improving the MAP-Elites algorithm to address these issues,
which is detailed next.

A. MAP-Elites Improvement

Compared to conventional genetic algorithms [60]–[62],
MAP-Elites [58], [59] aims to generate diverse high-
performing solutions, which may be more beneficial than
a single high-performing solution. MAP-Elites has found
widespread application in robotics, such as robot trajectory
optimization [64], maze navigation [63], and gait optimiza-
tion for legged robots [58].

We use MAP-Elites because it can simultaneously find the
optimal solution and preserve diversity in multiple dimen-
sions, which is well-suited for the characteristics of robotic
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Target Expression









[ < x′￼1, p′￼1 > ,
< x′￼2, p′￼2 > ,

⋯
< x′￼i, p′￼i > ]

Init Population

x′￼

Evaluate each candidate 
solution  on physical robotx′￼

Crossover

Mutation

Random selection via user preferences

: A
: B

New Candidate

Solution x′￼

 b′￼← feature_descripor(x′￼)
 p′￼← performance(x′￼)

Random solution

+ =(b′￼) < x′￼, p′￼>

Solution Matrix:

Fig. 3. Framework Overview. Our framework consists of two phases when generating the target expression. Phase A: MAP-Elites [58] creates candidate
solutions randomly before evaluating their performances and features. When performance meets requirements, the solutions are placed in the feature space
cells to which they belong. If multiple solutions map to the same cell, they are all preserved in that cell. Phase B: We randomly select several non-empty
cells from the whole domain of the solution matrix or a specific region determined by user preferences. After crossover and mutation, the obtained offspring
is evaluated after execution on the physical robot. Once its performance meets the criteria, the offspring will be placed into the solution matrix.

facial expressions. Algorithm 1 provides a pseudocode of the
default MAP-Elites algorithm [58], [59], which can be easily
conceptualized and implemented. Specifically, x and x′ are
candidate solutions which are n-dimentional vectors in the
solution space consisting of all possible values of x, where x
is a description of a candidate solution; the candidate solution
x′ is mapped to the location b′ = (b1, b2, · · · , bM ) in the
discrete feature space through a user-defined feature descrip-
tor, where M is the dimension of feature space. p′ denotes the
performance obtained after the performance measure of the
candidate solution x′. P is a performance matrix that gives
the best performance P(b′) for the corresponding location
b′ in P . Similarly, X is a solution matrix that stores the
best candidate solution X (b′) for the matching location b′

of X . After evaluating and featuring the candidate solution
x′ with better performance p′, the candidate solution x′ and
performance p′ are either placed at P and X at location b′

or replaced the previous element.

Since our goal is to increase the diversity of the gener-
ated facial expressions, the corresponding solutions can be
placed in the solution matrix if the confidence level of the
expression is the highest among the current facial attributes.
Consequently, our alternative approach is to no longer require
a separate performance matrix P , but rather to retain the
solution matrix X . As long as the performance p′ of the
current candidate solution x′ meets the criteria after evalu-
ation, the solution and corresponding performance ⟨x′, p′⟩
will be preserved in the solution matrix X , i.e., X+ =
⟨x′, p′⟩. Here, candidate solution x′ = (x1,x2, . . . ,xn)T

is an n-dimensional vector, each dimension of which is
converted to actual motor angle vj based on the movement
range of the corresponding motor, resulting in a brand-new
motor command V = (v1,v2, . . . ,vN )T . p′ represents the
confidence level of the current target expression after the
robot executes the motor command V .

Another novelty of this study is the strategy adopted by

the random selection() function in Algorithm 1. Instead of
conducting a global random search from the solution matrix,
which would result in uncontrollable offspring generation,
we propose using the average offset of the motor angles
corresponding to weak correlated AUs to represent user
preferences. The offspring generation process would then
select solutions from the user-specified region as parents.

B. Feature Descriptor

In Section III-A, we divide the collection of AUs correspond-
ing to each basic expression into two parts: strong correlated
AUs and weak correlated AUs. The former indicates a high
likelihood of recognition as a specific expression if the
combination occurs, while the latter increases its likelihood.
Thus, the strong correlated AUs ensure the specificity of
the facial categories generated, whereas the weak correlated
AUs increase the diversity and originality of the generated
expressions, which are our variations of interest.

For each candidate solution x′, a feature descriptor de-
termines the location of the solution in each cell of the
feature space. In other words, b′ is a M -dimensional vector
describing the feature of x′. In this work, b′ = (b1, b2)
has two dimensions, and b1, b2 represents the average angle
offsets of strong correlated AUs and weak correlated AUs
that are associated with the target expression, respectively.

V. EXPERIMENTS

Typically, evaluating an expression-generating system is a
qualitative process. However, the solution matrix produced
by the MAP-Elites algorithm allows us to quantify the
system’s efficiency in various ways. In this study, we
demonstrate the effectiveness of our system using qualitative
snapshots of the robot’s face. By examining the number
of solutions stored in individual cells of the solution ma-
trix, we can visually assess the advantages of generating
solutions with high performance, diversity, and originality.
Importantly, our system can provide solutions that closely

7609

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 30,2023 at 09:11:52 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
NUMBER OF PER TARGET EXPRESSION

Expression Category Number (Ours) Number [30]
Sadness 711 579
Surprise 154 65
Happiness 251 154
Fear 597 416

align with user preferences by leveraging the feature space
without sacrificing the quantity of generated solutions.

A. Experimental Setup

1) Target Expressions: We conducted a preliminary ex-
periment using the expression recognizer to assess the robot’s
ability to generate facial expressions. The difficulty in gener-
ating “Disgust” and “Anger” is because only limited or even
no degrees of freedom exist in the nose and lip regions,
as shown by the pre-experimental results. Thus, they were
eliminated from the target expressions. In our experiments,
the target expressions for the robot are “Sadness”, “Surprise”,
“Happiness”, and “Fear”.

2) Implementation Details: In MAP-Elites, we consider
two features: feature 1 represents the average offset of
motor angles corresponding to the strong correlated AUs,
and feature 2 represents the average offset of motor angles
corresponding to the weak correlated AUs. The performance
criteria are the confidence level of the target expression,
which ranges from 0 to 100. The size of solution matrix
is 10 × 10. The size of initial population is 1000 and the
number of iterations is 5000. The process takes about an
hour. The user preferences we consider are the high and low
offsets of feature 2.

To evaluate the robot’s capability to generate various
target expressions and verify user preferences’ impact on
generation results, we adopt identical experimental setups
for all target expressions.

B. Experimental Results

1) Generating Ability Evaluation: Table II shows the
numbers of generated solutions for each target expression
under identical experimental setups that vary quantitatively.
Figure 4 more vividly displays the distribution of solutions
in the solution matrix, where the value ranges of feature 1
and feature 2 differ across various solution matrices. Despite
automatically generating a certain number of solutions for
each target expression, the results are entirely non-pointed.
The primary objective of this paper is to verify the robot’s
ability to generate specified classes of facial expressions. To
this end, we compared our method to a previous approach
[30] that implemented expression generation based on a
genetic algorithm. According to the quantitative comparison
results in Table II, our approach has a remarkable advantage
in generation efficiency for the same number of executions
on the physical robot. In Figure 4 and Figure 6, Min, Max,
Ave denote the minimum, maximum, and average confidence

levels of all solutions in the solution matrix, respectively,
illustrating that our method generates a diversity of solutions.

2) Robot Face Visualizations: To demonstrate the effect
of facial expression generation, for each target expression
in turn, we randomly select a certain number of solutions
with confidence levels above 80 from the corresponding
solution matrix in Figure 4; these solutions are converted
into the corresponding motor commands and executed on the
physical robot; and we intercept the robot’s facial expression
following the execution of each command for display. The
visualization results are shown in Figure 5.

3) Expression Generation with Preferences: Certainly, the
MAP-Elites algorithm can generate many reliable solutions
in a short period, but its generation process is utterly random
and goalless. Consequently, we consider the average offset
of the motor angles corresponding to the weak correlated
AUs to represent the user preference, i.e., the offset is
separated into high and low offsets, and the solution matrix is
divided into two identical halves accordingly. The process of
offspring generation would then select solutions in the user-
specified region as parents rather than conducting a global
search of the solution matrix.

To validate the effects of user preferences on solutions,
we choose the high and low offset regions corresponding to
feature 2 as user preferences, respectively, for each target
expression. Figure 6 depicts the solution matrices generated
by the MAP-Elites algorithm when the high and low offset
regions are chosen as user preferences, respectively. By
comparing with the solution matrices in Figure 4, solutions
in (A) tend to shift towards the high offset region in
feature 2, whereas those in (B) tend to shift towards the low
offset region. This demonstrates that user preferences are
instructional to a degree for generating solutions.

VI. CONCLUSIONS AND FUTURE WORK

We developed a humanoid robot head with an anthro-
pomorphic appearance, multiple degrees of freedom, and
flexible skin. Moreover, we presented a generic learning
framework based on the MAP-Elites algorithm for automat-
ically generating facial expressions that can be customized
according to user preferences. Our experiments demonstrate
that the framework can generate a large number of human-
recognizable facial expressions without hard programming or
prior knowledge of kinematics. The solution matrices offer
a visualization of the diversity of the generated solutions. In
addition, we have effectively guided the solution-generating
process using user-specific preferences.

Although our proposed learning framework has demon-
strated its powerful ability to generate facial expressions,
robots with higher degrees of freedom may be able to display
even richer expressions. Furthermore, while the expression
generation process does not require prior knowledge of
robot kinematics, it may be challenging to generate facial
expressions in real-time. Those mentioned above are all
possible improvements, and we leave them for future work.
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Sadness Surprise Happiness Fear

Ave:  72.2Max:  99.7Min:  64.3 Ave:  56.1Max:  90.9Min:  43.2 Ave:  63.8Max:  96.8Min:  50.7 Ave:  64.3Max:  99.6Min:  45.3

Fig. 4. Solution Matrices of Target Expressions. feature 1 is the vertical coordinates of solution matrices, whereas feature 2 is horizontal. Under the
constraints of the target expression and AUs, the solutions are not uniformly distributed in the solution matrices.

Sadness

Surprise

Happiness

Fear

Fig. 5. Target Expression Visualizations. For each target expression individually, we randomly select a certain number of solutions with confidence
levels greater than 80% from the corresponding solution matrix, then convert them into motor commands, and finally display the facial expressions after
executing on our physical robot head.

Sadness Surprise Happiness Fear

(A)

(B)

Ave:  65.5Max:  99.8Min:  55.0 Ave:  52.0Max:  91.0Min:  39.2 Ave:  61.6Max:  98.8Min:  48.3 Ave:  57.8Max:  99.9Min:  37.5

Ave:  68.0Max:  99.6Min:  50.3 Ave:  55.9Max:  91.8Min:  42.0 Ave:  63.4Max:  96.6Min:  52.4 Ave:  58.4Max:  99.7Min:  44.6

Fig. 6. Expression Generation with Preference. We split the feature 2 into two equal portions: the high and low offset regions. When the high and
low offsets are considered as user preferences, (A) and (B) represent the changes in the distribution of generated solutions in the solution matrix.
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