
Solving Large-Scale and Sparse-Reward

DEC-POMDPs with Correlation-MDPs�

Feng Wu and Xiaoping Chen

Multi-Agent Systems Lab,Department of Computer Science,
University of Science and Technology of China,

Hefei, 230026, China
wufeng@mail.ustc.edu.cn, xpchen@ustc.edu.cn

Abstract. Within a group of cooperating agents the decision making
of an individual agent depends on the actions of the other agents. A lot
of effort has been made to solve this problem with additional assump-
tions on the communication abilities of agents. However, in some real-
world applications, communication is limited and the assumptions are
rarely satisfied. An alternative approach newly developed is to employ
a correlation device to correlate the agents’ behavior without exchang-
ing information during execution. In this paper, we apply correlation
device to large-scale and spare-reward domains. As a basis we use the
framework of infinite-horizon DEC-POMDPs which represent policies as
joint stochastic finite-state controllers. To solve any problem of this kind,
a correlation device is firstly calculated by solving Correlation Markov
Decision Processes (Correlation-MDPs) and then used to improve the
local controller for each agent. By using this method, we are able to
achieve a tradeoff between computational complexity and the quality of
the approximation. In addition, we demonstrate that, adversarial prob-
lems can be solved by encoding the information of opponents’ behavior
in the correlation device. We have successfully implemented the proposed
method into our 2D simulated robot soccer team and the performance
in RoboCup-2006 was encouraging.

1 Introduction

Multi-Agent systems often require coordination to ensure that a multitude of
agents will work together in a globally coherent manner under uncertainty. For
some problems, each self-organizing agent has to cooperate to optimize a joint
reward function, while having different local observations and limited communi-
cation [Kaelbling et al., 1998]. RoboCup [Kitano et al., 1997] is a good example
of a cooperative multi-agent system in which the soccer-playing robots like hu-
man soccer players have to coordinate their actions by different limited messages.

The infinite-horizon Decentralized Partially Observable Markov Decision Pro-
cess (DEC-POMDP) framework is one way to model these problems. And
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Bounded Policy Iteration (BPI) [Bernstein et al., 2005] is currently the lead-
ing approximate algorithm which guarantees both bounded memory usage and
monotonic value improvement for all initial state distributions. It defines a joint
controller to be a set of local controllers along with a correlation device. On
each iteration, a node is chosen from one of the local controllers or the corre-
lation device, and its parameters are updated through the solution of a linear
program. Namely, an iteration is guaranteed to produce a new controller with
value at least as high as the old for every possible initial state distribution. A
major drawback of this approach is that it scales exponentially in the number
of agents. When we apply it to our soccer simulated team, it can be very slow
for the major characteristic of sparse-reward structures which means the joint
reward functions are zero everywhere, except for a few states.

In this paper, we just go one step further by developing an alternative ap-
proach to handle large-scale DEC-POMDPs with sparse-reward structures.Our
new method which aims to reduce, as efficiently as possible, the runtime, solves
these problems as follow: a correlation device is firstly calculated by solving
Correlation Markov Decision Processes (Correlation-MDPs) and then used to
improve the local controller for each agent. Our experimental results show its
efficiency and it runs substantially faster, which achieves a tradeoff between
computational complexity and the quality of the approximation.

The rest of the paper is organized as follows. The next section gives some
comparison of the related works. After that, the DEC-POMDP model, and the
basic idea of BPI are introduced. Then, we present our new algorithm and some
experimental results in the RoboCup domain.

2 Related Work

Over the last six years, researchers have proposed a wide range of optimal and
approximate algorithms for decentralized multi-agent planning. In this paper we
focus on cooperation aspect. One important class of algorithms is called MAA*: A
Heuristic Search Algorithm for Solving Decentralized POMDPs [Zser et al., 2005],
where multi-agent A* (MAA*), the first complete and optimal heuristic search
algorithm for solving decentralized POMDPs with finite horizon was presented.
But the algorithm runs out of time very quickly, because the search space grows
double exponentially.

The previous approach that is closest in spirit to ours is called Team coor-
dination among robotic soccer players [Matthijs et al., 2002]. It is based on the
idea of dynamically distributing roles among the team members and adds the
notion of a global team strategy (attack, defend and intercept). Utility func-
tions are used for estimating how well suited a robot is for a certain role. But
inconsistencies sometimes occur.

A DEC-POMDP can also be seen as a partially observable stochastic game
(POSG) with common payoffs [Emery-Montemerlo et al., 2004]. In this approach,
the POSG is approximated as a series of smaller Bayesian games. Interleaving
planning and execution, this algorithm finds good solutions for short horizons, but
it still runs out memory after horizon 10.
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3 The DEC-POMDP Model and BPI Algorithm

The family of Markov decision processes describes discrete stochastic systems
that evolve under the influence of one or multiple controllers. With each transi-
tion of the system is associated a reward value, the objective of the controller is
to select precisely a sequence of actions that maximizes the collection of rewards
in the long run. For the case of several distributed but cooperative controllers,
their objective is to act selfishly as to maximize the reward collected by the
team.

3.1 The DEC-POMDP Model

We base our work on the DEC-POMDP framework introduced by Bernstein
[Bernstein et al., 2002], although alternative definitions are equally allowed.

Definition 1 (DEC-POMDP). An n-agent DEC-POMDP is given as a tuple
〈I, S, {Ai}, {Oi}, P,R〉, where

– I is a finite set of agents indexed 1, ..., n
– S is a finite set of states
– Ai is a finite set of actions available to agent i and −→

A = ×i∈IAi is the set
of joint actions, where −→a = 〈ai, ..., an〉 denotes a joint action

– Oi is a finite set of observations for agent i and −→
O = ×i∈IOi is the set of

joint observations, where −→o = 〈o1, ..., on〉 denotes a joint observation
– P is a set of Markovian state transition and observation probabilities, where
P (s′,−→o |s,−→a ) denotes the probability that taking joint action −→a in state s
results in a transition to state s′ and joint observation −→o

– R : S ×−→
A → R is a reward function

In this paper, we consider the case in which the process unfolds over an infinite
sequence of stages, At each stage, all agents simultaneously select an action,
and each receives the global reward and a local observation. The objective of
the agents is to maximize the expected discounted sum of rewards received. We
denote the discount factor γ and require that 0 ≤ γ < 1. In order to be optimal,
the Markov assumption requires a policy to depend on the whole information
available to the agent at time t, namely its complete history of past observa-
tions and actions. For infinite horizon problems however, this would require a
controller to have infinite memory, which is not always possible. Therefore, our
algorithm uses stochastic finite-state controllers (FSCs) to represent policies.

Definition 2 (FSC). A stochastic finite-state controller (FSC) is a policy graph,
defined as a tuple 〈Qi, ψi, ηi〉, where

– Qi is a finite set of controller nodes
– ψi : Qi → ΔAi is an action selection function
– ηi : Qi ×Ai ×Oi → ΔQi is a transition function
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The functions ψi and ηi parameterize the conditional distribution P (ai, q
′
i|qi, oi).

For the case of decentralized problems with multiple controllers, the goal is it to
find a set of FSCs, one for each agent, such that their concurrent execution max-
imizes the expected discounted sum of rewards received.The agents’ controllers
determine the conditional distribution P (−→a ,−→q ′, |−→q ,−→o ).

Recently, a memory-bounded dynamic programming algorithm was proposed
for infinite-horizon DEC-POMDPs [Bernstein et al., 2005] . It extends a joint
controller to allow for correlation among the agents. To do this, an additional
finite-state machine, called a correlation device is introduced, which provides ex-
tra signals to the agents at each time step. The device operates independently of
the DEC-POMDP process, and thus does not provide the agents with informa-
tion about the other agents observations. By using correlated joint controllers,
higher value can be achieved than with independent joint controllers of the
same size.

Definition 3 (Correlation Device). A correlation device is a tuple 〈C,ψ〉,
where

– C is a set of states
– ψ : C → ΔC is a state transition function

To improve a correlated joint controller, either the correlation device or one
of the local controllers can be changed. Both improvements can be done via a
bounded backup, which involves solving a linear program.

Following an improvement, the controller can be reevaluate through the solu-
tion of a set of linear equations. It has been proofed that performing either of two
updates cannot lead to a decrease in value for any initial state distribution. The
runtime is polynomial in the sizes of the DEC-POMDP and the joint controller,
but exponential in the number of agents.

However, in large-scale and sparse-reward domains, improving the correlation
device is very difficult because of the characteristic of sparse reward structures.
It can take a very long time for rewards to propagate to distinct states. Thus, it is
often possible to get no improvement for just a few of steps. Long steps of search
is rather inefficient for large scale problems such as RoboCup. It is obviously
worse if multiple choices exist at each state. For example, in the decision making
of the RoboCup 2D Simulation League, agents gain non-zero reward for their
joint defense actions only when some agent of the team kicks or tackles the ball.
Currently, most of the opponents process ball with high quality. Thus, it usually
takes thousands of time steps to steal the ball for opponents.

4 Dynamic Programming for Correlation-MDPs

In this section, we describe the Dynamic Programming (DP) algorithm to calcu-
late the correlation device as an approximate alternative to BPI. This method,
analogous to the belief propagation, operates by solving a MDP, which can be
regarded as a rewards propagation process. For sparse reward structures, each
distinct state will have non-zero reward after the DP algorithm.
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We can translate the above method to our multi-agent decision making prob-
lem by giving the correlation device a concrete meaning.

Definition 4 (Correlation Device State). A correlation device state c ∈ C
is a set of joint actions1, where ∀−→a1,−→a2 ∈ c, |R̄(−→a1)− R̄(−→a2)| ≤ ε and R̄(−→a ) is the
reward function. The reward function for c is R(c) = max−→a ∈cR̄(−→a ).

Thus, how to compute the correlation device states is the main job of our method.
In RoboCup 2D defensive decisions, the majority of the joint actions has no
immediate rewards, or in other wards, it is very difficult in the immediate direct
rewards given when the proceeds are sparse reward structures. Only when all
opponents can not process the ball any longer, our agents make that defensive
effectiveness and have non-zero reward. Running for a better opponent team,
it may need to spend tens, hundreds or even more of the cycles to reach this
ultimate goal. So far, solving this type of DEC-POMDP problems with the
existing methods is not very satisfied.

In the DEC-POMDP model, the reward function R(s,−→a ) indicates that joint
actions should link to a particular state for the need to obtain rewards. Thus,
the pairs of specific state and joint actions which have the maximum rewards
can be certainly established. In RoboCup 2D defensive decisions, the structure
of rewards is sparse. In order to assess the states of those with zero reward,
first is to be done with the goal of state to propagate the reward to distinct
states. The propagation process can be described by the following definition of
Correlation-MDPs.

Definition 5 (Correlation-MDP). A Correlation-MDP is given as a tuple
〈S̄, Ā, P̄ , R̄, γ〉, where

– S̄ is the set of states of the DEC-POMDP model
– Ā = ×i∈IAi is a set of joint actions
– R̄ : S → � and R̄ = maxa∈Ā{R(s,−→a )}, where R(s,−→a ) is the reward func-

tion of the DEC-POMDP model
– P̄ : S × S → [0, 1] can be defined:

P̄ (s′|s) =
P (s′) · P (s|s′)

∑
si∈S P (si) · P (s|si)

2 (1)

where P (s|s′) = max−→a ∈Ā{P (s|−→a , s′)}, P (s|si) = max−→a ∈Ā{P (s|−→a , si)},
P (s′) and P (si) are the probability of s′ and si

– γ is the discount factor

A Correlation-MDP compared to the original DEC-POMDP can be viewed
as a reverse model. What Correlation-MDP considers is the shift from the target

1 Note that a correlation device is a finite-state machine, any reasonable definition of
the states is allowed.

2 Known as Bayes formula.
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state to the initial one. However, in light of a DEC-POMDP model, it can only
provide such a probability P (s′,−→o |s,−→a ), which is from the initial state to the
target after the execution of joint actions. And the equation (1) is one of the
possible solutions (from P (s|s′) to P̄ (s′|s)). In our model, P (s′) and P (si) are
the probability of s′ and si, which can be used to control the emergence of
a particular state (for example, in the area of inside and outside penalty, the
strategy for both is different in the RoboCup 2D simulation league). It is easy
to encode the information of opponents behavior into the correlation device in
this way. Solving a Correlation-MDP means finding a policy π : S̄ → Ā that
maximizes the expected reward for each state s ∈ S̄. In fact, the whole process
is to build a tree from a root which is the target of the strategy. For the sake
of better understanding this process, let us consider a simplified example of a
soccer defense situation in Fig. 1. and the tree built by the DP algorithm is in
Fig. 2.

C

A

B

Fig. 1. White circles represent our members, and black ones represent opponents A
(the top one), B (the middle one), C (the bolttom one). Each agent only has four type
of actions: (formation), (mark, A), (mark, B), (mark, C). The target is to make all the
opponents marked. Our side is left in the pitch.

In order to control the time complexity and precision we define maxChildren
to limit the maximum number of children for each parent. Algorithm 1 shows
the pseudo-code of the DP algorithm.

Proposition 1 (Algorithm 1). The Algorithm 1 has a linear space com-
plexity with respect to the maxChildren, and the worst case time complexity is
O(maxChildren× |S̄|2).
Proof. The main loop of the algorithm (line 5-14) depends linearly on the size of
S̄. Inside this loop, the remaining critical operation is in line 9, where the children
of each node is updated. Once the variable maxChildren is fixed, the number
of the children per node is not more than it. In every iteration of the algorithm,
no more than maxChildren subtrees are constructed. In the worst case, each
node has to search all of the states to update its children, therefor, the upper limit
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Fig. 2. The value of nodes is R̄(s), and the value of edges is P̄ (s′|s). The discount factor
is 0.9. The black circle means the opponent is marked, while the white one means not.
Note that, in Fig. 1, the easiest action is to mark B, then is to mark A, and to mark
C is the most difficult. Obviously the best defense strategy (Marking all the opponent
successfully at the same time is usually impossible) should be marking C first, then
A, and B finally. And the worst one may be marking A first, then B, and C finally,
because the final step is much difficult by following this strategy: Opponent C may
control the ball at that time and pass it to A or B, which is very dangerous in some
case.

Algorithm 1. Compute the policy tree (correlation tree) Qt+1

1: Q0 ← initialize all states in S̄ as a tree
2: for each s ∈ S̄, V0(s)← R̄(s)
3: maxChildren ← max number of children for the tree
4: t← 0
5: loop:
6: t← t + 1
7: for each s ∈ S̄, do {
8: Qt+1 ←fullBackup(Qt)
9: find a set S′ from S̄ to satisfy:

– ∀s′′ ∈ S̄ − S̄′, s′ ∈ S̄′ P (s|s′′) ≤ P (s|s′)
– ∀s′ ∈ S̄′R(s′) + Vt(s) · P̄ (s′|s) ≤ Vt(s

′)
– |S̄′| ≤ maxChildren

10: Vt+1(s
′)← R(s′) + Vt(s) · P̄ (s′|s) for each s′ ∈ S̄′

11: Vt+1(s
′′)← Vt(s

′′) for each s′′ ∈ S̄ − S̄′

12: Qt+1 ← set s as the parent of each s′ ∈ S̄′, set each s′ ∈ S̄′ as the children of s.
13: }
14: until maxs|Vt+1(s)− Vt(s)| < ε
15: return Qt+1

for the construction is equal to maxChildren|̇S̄|. By choosing maxChildren
appropriately, the desired upper limit of the tree length can be per-set, no more
than |S̄|. Thus, the amount of space grows linearly with maxChildren. For the
worst case, this is O(maxChildren × |S̄|2).
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Although the worst case time complexity is O(maxChildren × |S̄|2), the av-
erage time complexity is much smaller. Increasing the value of maxChildren
generally leads to both higher accuracy and time complexity on average. In
practice,maxChildren is usually necessary to achieve a tradeoff between compu-
tational complexity and the quality of the approximation. When maxChildren
is equal to |S̄|, every iteration of Algorithm 1 needs to consider all the possible
states, which is the same as a linear program of BPI. The size of these states
is exponential in the number of agents. A more detailed analysis of the DEC-
POMDPs shows that most of the states are useless, especially with sparse reward
structures.

According to the tree computed by Algorithm 1, the correlation device can
be calculated easily. In general, the assumption below holds: Only when an
agent finds a better, or when it finds higher reward cooperation strategy, the
current one is changed. It means a rational agent will not choose the worse forms
of cooperation from its own local observation. In the RoboCup 2D defensive
decision making, an agent in the next step would be impossible to choose a
strategy, although in accordance with their own local observation such a strategy
might be possible, from the perspective of cooperation it is not likely to exist
such a big leap. An upper bound estimate for the reward can be established by
the tree calculated above.

Proposition 2 (Algorithm 2). The Algorithm 2 returns the near-optimal
value for P (c′|c), which is proportional to maxChildren

|S| .

Proof. The usage of P (c′|c) is to correlate the joint controllers in BPI. According
to BPI, the procedure for improving the correlation device works by looking for
the best parameters satisfying the following inequality:

V (s,−→q , c) ≤
∑

−→a
P (−→a |c,−→q )[R(s, a)+γ

∑

s′,−→o ,−→q ′
,c

P (−→q ′|c,−→q ,−→a ,−→o )·

P (s′,−→o |s,−→a ) · P (c′|c)V (s′,−→q ′, c′)] (2)

for all s ∈ S and −→q ∈ −→
Q .

Note that if R(c′) > R(c), the value of P (c′|c) is definitely high by the con-
crete meaning of c′ and c, since the inequality (2) implies that V (s,−→q , c) >
V (s′,−→q ′, c′) is not allowed. The basis of the computational process of Algo-
rithm 2 is an ideal tree constructed by Algorithm 1 in which each state has
the largest reward propagated from the target. For each node of the tree, the
value of its parent is the upper bound of the possible rewards for the next step.
Therefore, the rewards which could be calculated for the next step during exe-
cution time will range between current rewards and the upper bound. And the
process of Algorithm 2 is just on the premise that the information about agents
local observations is unavailable and gives P (c′|c) a reasonable approximation
of the distribution while ensuring the inequality (1) non-reducing. This guar-
antees the near-optimality of the solution. In the process of Algorithm 2, if
maxChildren = |S̄|, all possible states need to be examined, which is the same
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Algorithm 2. Compute the state transition function p(c′|c)
1: Q← a pre-computed correlation tree by Algorithm 1;
2: S0 ← all of the nodes in Q with the value V (s) : |V (s)−R(c)| ≤ ε
3: S1 ← ∅, S2 ← ∅
4: δ ← 0, γ ← 0
5: for each s ∈ S0 {
6: δ ← δ + V (s) · 1
7: if(|V (s)−R(c′)| ≤ ε) γ ← γ + V (s) · 1
8: s′ ←the parent of s
9: S1 ← S1 ∪ {s′}

10: δ ← δ + V (s′) · P̄ (s|s′)
11: if(|V (s′)−R(c′)| ≤ ε) γ ← γ + V (s′) · P̄ (s|s′)
12: S′ ←all the children of s′ except s
13: for each s′′ ∈ S′{
14: if(R(c)− V (s′′) ≤ ε){
15: S1 ← S1 ∪ {s′′}
16: δ ← δ + V (s′′) · P̄ (s′′|s)

P̄ (s|s′)
17: if(|V (s′′)−R(c′)| ≤ ε) γ ← γ + V (s′′) · P̄ (s′′|s′)

P̄ (s|s′)
18: }
19: }
20: }
21: return γ

δ

as a linear program for BPI, and if maxChildren < |S̄|, a lot of states which are
useless for the target will be eliminated. Thus, the algorithm works efficiently
and the precision is proportional to maxChildren

|S̄| .

In Algorithm 2, by choosing the value of maxChildren, the states which make
small contribution to the goal have not been carried out in order to reduce the
amount of calculation while guarantee high accuracy. This technique is effective,
especially for the sparse reward domain. Further analysis of the RoboCup 2D
defense problem shows that many joint actions for a special state are useless. BPI
algorithm gives these useless joint actions the same needs of assessment, while
our algorithm takes full account of this characteristic, thereby maintaining the
high accuracy with a substantial amount of the reduction of the runtime. The
parameters maxChildren present an important trade-off: its increase generally
increases both precision and runtime. Thus, we can examine this trade-off and
identify the best parameters for concrete problems. Though we are not able to
give theoretically strict proof on this issue and the exact solution for the accuracy
of the two algorithm in this paper, the following experiments proved that our
approach is more effective.

Although Correlation-MDPs are very usefull for our soccer robot team, it has
two limitations when extended to other applications. Firstly, it requires initial
state distribution as input. Secondly,the joint actions of agents and their effort
should be easily modeled.
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5 Experiments

We performed an experimental feasibility study in RoboCup domain that com-
pares our algorithm and BPI [Bernstein et al., 2005], currently the leading algo-
rithm for solving infinite-horizon DEC-POMDPs with quality guarantees. Below,
we describe our experimental methodology, the specifies of the problems, and our
results.

As noted above, the correlation device operates independently of the DEC-
POMDP process. Thus, the experiments took place in two phases. First, either
our algorithm or BPI was run to calculate the correlation device. Secondly,
the correlation devices were used to improve local controllers with the some
improving procedure.We applied both the BPI and our algorithm to compute the
correlation device offline. In BPI we first chose a device node c, and considered
changing its parameters for just the first step. New parameters must yield value
at least as high for all states and nodes of the other local controllers. For our
algorithm, we applied a Correlation-MDP model for all states, and calculated it
with some high reward states fixed3 . Then the correlation device was born by
Algorithm 2. The computation is performed offline in a centralized way and
the final solution is a correlation device which can then be executed by multiple
agents in a decentralized way.

In order to encode the information of opponents behavior, we use some learn-
ing methods [Ubbo Visser et al., 2003] to determine the value of P(s) in Equa-
tion (1). For example, some opponents prefer attacking from the midway, then
the probability of midway defending states will be increased; while some rivals
like attacking from the sideway, then the probability of sideway defending states
will be increased. But a discussion of the learning algorithm is beyond the scope
of this paper and thus the following performance comparison does not include
results for it.

Experiment 1: We determined how our algorithm and BPI trade off between the
number of agents and runtime for the RoboCup Simulation 2D League with the
fixed threshold reward (0.8). Our results show that our algorithm is faster than
BPI when the number of agents is bigger than 3. For example, our algorithm
needed 458.2ms and BPI needed 799.5ms to compute a solution that is only
8 agents under consider (there are 11 agents for each team in the RoboCup
Simulation 2D League). Fig. 3 presents the performance comparison.

Experiment 2: We then determined how our algorithm and BPI trade off be-
tween runtime and the reward for the RoboCup Simulation 2D League when the
number of agents is fixed (7 agents). Our results show that our algorithm is still
faster than BPI with the same reward value, by fixing the number of agents. For
example, our algorithm needed 533.2ms and BPI needed 1111.9ms to compute
a solution that the reward is 0.9. Fig. 4 presents the performance comparison.4

3 The key parameter is the maximum number of children for each node, maxChildren,
which is related to the runtime and precision. In our experimental domain,
maxChildren = 3 is sufficient to produce the best solution.

4 All results are generated on a 2.2GHz/1GB machine using a C++ implementation.
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RoboCup-2006 has provided an ideal test bed for our algorithm which imple-
mented in our 2D simulation robot team. This team used the framework and
algorithm described in the previous section to improve its highlevel strategy.
The main motivation was to improve upon the coordination during defense.
Since many different factors contribute to the overall performance of the team,
it is difficult to measure the actual effect of the coordination with our new algo-
rithm clearly. However, using this approach, we won all the matches except one
ended in a draw 0-0 in the RoboCup-2006 in Bremen, German.

BPI
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0 2 4 6 8 10
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Fig. 3. The result of Experiment 1
with 0.8 as the threshold reward and
the discount rate is γ = 0.9
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0 0.2 0.4 0.6 0.8
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Fig. 4. The result of Experiment 2 with 7
agents and he discount rate is γ = 0.9

6 Conclusion and Future Work

The decision making in the RoboCup 2D Simulation League can be modeled
with DEC-POMDPs. Despite recent advances in solving DEC-POMDPs, state-
of-the art solution methods are still either inefficient [Bernstein et al., 2005] or
cannot provide guarantees on the quality of the resulting policy. In this paper,
we presented a solution method, that avoids both of these shortcomings. Our
experimental results show that the algorithm performs very well. The aim of
this paper was to provide a first experimental feasibility study to demonstrate
its potential. It is future work to study the theoretical properties of this method
in more depth (for example, analyze its complexity or extend its error analysis),
and extend it (for example, to handle more adversarial problems). The algorithm
and representations used in this work open up multiple research avenues for
developing effective approximation algorithms for the DEC-POMDP model in
the RoboCup domain.
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