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Abstract

We propose a novel algorithm based on Monte-
Carlo tree search for the problem of coalition struc-
ture generation (CSG). Specifically, we find the op-
timal solution by sampling the coalition structure
graph and incrementally expanding a search tree,
which represents the partial space that has been
searched. We prove that our algorithm is complete
and converges to the optimal given sufficient num-
ber of iterations. Moreover, it is anytime and can
scale to large CSG problems with many agents. Ex-
perimental results on six common CSG benchmark
problems and a disaster response domain confirm
the advantages of our approach comparing to the
state-of-the-art methods.

1 Introduction
Coalition formation is an important research topic in multi-
agent systems where a group of agents come together to form
coalitions in the performance of a specific task [Shehory and
Kraus, 1998] or or provisioning of a service such as social
ride-sharing [Bistaffa et al., 2017]. One of the key challenges
that arise in this formation process is that of Coalition Struc-
ture Generation (CSG), which involves partitioning the set of
agents into exhaustive and disjoint coalitions, called a coali-
tion structure, so as to maximise the social welfare. Unfortu-
nately, finding the optimal coalition structure is difficult and
has been proved to be NP-complete [Sandholm et al., 1999].

To date, a number of approaches have been proposed
to solve CSG problems either optimally or approximately.
Given that the solution space is exponential with the num-
ber of agents, optimal methods [Yeh, 1986; Rahwan et al.,
2009] are usually not scalable and can only handle prob-
lems with small number of agents (e.g., <40 [Rahwan et al.,
2015]). This limits its applicability to real-world problems
requiring many agents. On the other hand, approximate tech-
niques [Di Mauro et al., 2010; Farinelli et al., 2013] can re-
turn a solution quickly but usually provide no guarantees on
solution quality. This makes them unsatisfactory for some
serious applications (e.g., disaster response). To amend this,
approaches [Service and Adams, 2011; Farinelli et al., 2017]
were proposed to offer bounds for the solution quality. How-

ever, they require the utility to have certain special structures
that may not be realistic for some applications.

Against this background, we propose CSG-UCT — a scal-
able and anytime approach for coalition formation in multi-
agent systems. Notably, it is scalable and can solve large
CSG problems with hundreds of agents, which is computa-
tionally intractable for existing optimal methods. Further-
more, it is anytime and can return the current best solution
if time is limited, or converge to the optimal solution if time
is sufficient. Specifically, we borrow ideas from the research
on Monte-Carlo Tree Search (MCTS), which has been suc-
cessful in solving large games (e.g., AlphaGo [Silver et al.,
2016]), to find the best solution in the large coalition structure
graph [Sandholm et al., 1999]. In more detail, we develop a
variation of the UCT algorithm [Kocsis and Szepesvári, 2006]
for CSG, which selects the most promising moves towards
the optima using the UCB1 heuristic [Auer et al., 2002], and
expands the search tree based on random sampling of the so-
lution space. To the best of our knowledge, this is the first
work to solve CSG problems using the MCTS techniques.

In this paper, we advance the state-of-the-art with the fol-
lowing contributions: 1) In Section 3, we propose a novel
method to search the coalition structure graph using the
MCTS framework. 2) In Section 4, we prove the proposed
algorithm is complete and anytime, and discuss its connec-
tions with other methods and some implementation tricks. 3)
In Section 5, we empirically evaluate the proposed approach
on six common benchmark problems and a disaster response
domain, and confirm that it indeed converges to the optimal
solution given sufficient number of iterations and outperforms
the leading approximate methods for large problems. All
together, we contribute with the first MCTS-based method
for CSG, which is promising to improve the applicability of
coalition formation techniques in real-world applications.

2 Background
2.1 Coalition Structure Generation
Given a set of n agents denoted by A = {a1, a2, · · · , an}, a
coalition C is defined as a non-empty subset ofA, i.e., C 6= ∅
and C ⊆ A. For any coalition C, the characteristic function
v(C) ∈ < specifies a value that represents a cost or profit for
that coalition. A coalition structureCS = {C1, C2, · · · , Ck}
is a collection of k coalitions, such that

⋃
i∈1..k Ci = A and
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Ci ∩ Cj = ∅ for any i, j ∈ 1..k and i 6= j, i.e., each agent is
selected at least in and only in one coalition. The value of a
coalition structureCS is the sum of the coalition values in the
structure, i.e., v(CS) =

∑
C∈CS v(C). For example, given

a set of four agents A = {a1, a2, a3, a4}, C = {a2, a3} is
a coalition of A and a possible coalition structure over A is
CS =

{
{a1}, {a2, a3}, {a4}

}
, with the value computed as:

v(CS) = v({a1}) + v({a2, a3}) + v({a4}).
Coalition Structure Generation (CSG) is the problem of

finding a coalition structure CS∗ over A whose value is max-
imal, i.e., CS∗ = arg maxCS∈ΠA v(CS) where ΠA denotes
the set of all possible coalition structures over A. Here, we
assume that v(C) ≥ 0 for any C ⊆ A. Generally, the CSG
problem implies searching ΠA in order to find one whose
value is maximal. Several CSG approaches are based on the
observation that the set ΠA has some structure, which can be
exploited to speed up the search process. A commonly used
representation for ΠA is the coalition structure graph [Sand-
holm et al., 1999], i.e., a undirected graph, where:

• A node represents a coalition structure and is categorized
into levels, ΠA

1 ,Π
A
2 , · · · ,ΠA

n , where level ΠA
i contains

the nodes that represent all coalition structures with ex-
actly i coalitions.
• An edge connects two coalition structures if and only if:

they belong to two consecutive levels ΠA
i and ΠA

i−1 and
the coalition structure in ΠA

i can be obtained from the
one in ΠA

i−1 by splitting one coalition into two.

2.2 Monte-Carlo Tree Search

Monte-Carlo tree search (MCTS) is a method for finding opti-
mal decisions in a given domain by taking random samples in
the decision space and building a search tree in an incremen-
tal and asymmetric manner. It has been proved to be useful
in domains that can be represented as trees of sequential de-
cisions, particularly games (e.g., Go [Silver et al., 2016]) and
planning problems (e.g., MDPs).

The basic MCTS process is conceptually very simple. To
incrementally build a search tree, at each iteration, it starts
from the root and consists of the following four steps: 1) Se-
lection: it selects successive child nodes down to a leaf node,
2) Expansion: it expands the tree by adding a new child node,
3) Simulation: it runs several simulations from that node, 4)
Backpropagation: it uses the result of the simulations to up-
date information in the nodes on the path from the leaf to the
root. This process repeats until some termination condition
meets. One of the essential step is how to select a child node
so that the tree expands towards the most promising subspace.

UCT [Kocsis and Szepesvári, 2006] is a MCTS-based al-
gorithm that has achieved remarkable success in solving large
MDPs. Specifically, it treats the node selection as a multi-
armed bandit problem and applies the UCB1 heuristic [Auer
et al., 2002], where the node value is augmented by an ex-
ploration bonus that is highest for rarely tried children. More
techniques on MCTS and its variances can be found in the
recent survey [Browne et al., 2012].

3 Applying MCTS to CSG
We propose the CSG-UCT approach by applying the MCTS
method to search the optimal coalition structure in the CS
graph. Specifically, we start the search from the top level of
the CS graph down to the bottom level and expand the search
tree based on random sampling of the solution space.

Similar to the aforementioned CS graph, we define the
search tree built by our algorithm as follow:

• Each tree node is associated with a coalition structure
CS ∈ ΠA and the root node of the tree is with the sin-
gleton coalition structure, i.e.,

{
{a1}, {a2}, · · · , {an}

}
.

• Each tree branch is linked with a pair-wise join oper-
ation, where the child linked by that branch is gener-
ated by joining two coalitions of the CS in its parent
node, e.g.,

{
{a1, a2}, {a3}, {a4}

}
is the child of node{

{a1}, {a2}, {a3}, {a4}
}

by joining {a1}, {a2}.
Clearly, the maximal depth of the search tree is n, the size of
CS in depth k of the tree is k, and each path from the root to
the leaf will end with the grand coalition. In the rest of this
paper, we will interchangeably use a coalition structure CS
to refer the tree node associated with CS.

Starting from the tree with only the root node, we incre-
mentally build the search tree iteration by iteration. A partial
search tree represents the solution space that has been sam-
pled (i.e., searched). Following the standard procedure of
MCTS, we describe one iteration of our algorithm, given the
current (partial) search tree, with the following four steps:

3.1 Selection
The selection step is for each tree node to select a branch in
order to form a path from the root to a leaf. This is a critical
step for MCTS because it implies which region of the solution
space should be searched at the current iteration. We borrow
ideas from the UCT algorithm and view the node selection as
a Multi-Armed Bandit (MAB) problem. Specifically, we use
the UCB1 heuristic [Auer et al., 2002], which is a simple yet
attractive method to solve MAB.

Let V (CS) = maxCS′∈Tree(CS) v(CS′) be the maximal
value of the coalition structures in the subtree Tree(CS)
rooted by CS. This value is known only when the subtree
is complete. Let Tree(CS) be the partial subtree built the
search process and V̄ (CS) = maxCS′∈Tree(CS) v(CS′) be
the current maximal value. Let N(CS) be the frequency
count of the node being visited during the search process. The
UCB1 heuristic for node selection can be written as:

UCB1(CS′) = V̄ (CS′) + c

√
logN(CS)

N(CS′)
(1)

where c is a constant parameter. Given this, we can select the
child node that maximizes the UCB1 heuristic as: CS∗ =
arg maxCS′∈Child(CS) UCB1(CS′), where Child(CS) de-
notes all possible children of node CS.

Intuitively, if N(CS′) is equal for all children, the UCB1
will select the child with the maximal V̄ (CS′) because the
remaining term is equal for all of them. However, if some
child is much less frequently visited than others, the term
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√
logN(CS)/N(CS′) will become significant and bias the se-

lection towards it. For example, if N(CS) = 100, N(CS′) =
1, N(CS′′) = 99,

√
log 100/1 ≈ 1.4 >

√
log 100/99 ≈ 0.14.

Therefore, the UCB1 may select CS′ instead of CS′′ though
V̄ (CS′′) is slightly larger (e.g., less than 1.0). In a word, the
UCB1 has the good property of balancing the well-known ex-
ploration and exploitation tradeoff [Auer et al., 2002].

3.2 Expansion
When a child CS∗ ∈ Child(CS) chosen by the node selec-
tion procedure is currently not in the tree, the search tree is
then expanded by adding a new leaf node CS∗ as a child of
CS to the tree.

3.3 Simulation
When a new leaf node CS∗ is added to the tree, some default
policy is used to estimate V̄ (CS∗). In this work, we perform
a rollout search by successively joining two coalitions. For
example, a rollout trace starting from the singleton coalition
structure

{
{a1}, {a2}, {a3}, {a4}

}
is:{

{a1}, {a2}, {a3}, {a4}
}
→
{
{a1, a2}, {a3}, {a4}

}
→
{
{a1, a2}, {a3, a4}

}
→
{
{a1, a2, a3, a4}

}
Apparently, this process ends with the grand coalition when
no join of two coalitions is possible. Then, the value of CS∗
is initialized by V̄ (CS∗) ← maxCS′∈Trace(CS∗) v(CS′),
where Trace(CS∗) is a set of coalition structures encoun-
tered during the rollout search starting from CS∗.

Now, the remaining problem is how to select the two coali-
tions C1, C2 to be joined in a coalition structure CS. Here,
we use a simple myopic heuristic as follow:

C1, C2 = arg max
C′1,C

′
2∈CS

[v(CS′)− v(CS)] (2)

where CS′ = CS + {C ′1 ∪C ′2} − {C ′1} − {C ′2} is the coali-
tion structure after joining two coalitions C ′1 and C ′2 in CS.
Intuitively, we join two coalitions in CS when it results in the
maximal improvement in the coalition structure value.

3.4 Backpropagation
After the value V̄ (CS∗) of the newly added node CS∗ is
initialized, the values of all its ancestors in the tree are up-
dated by backpropagting the value V̄ (CS∗) from the leaf
node CS∗ to the root. Specifically, for every level-l node
CSl in the propagation path of the tree, its value is updated
by V̄ (CSl) = max{V̄ (CSl), V̄ (CSl+1)}, where CSl+1 is
the child of CSl in the path.

To put the above four steps together, we have one iteration
of the overall CSG-UCT algorithm. Starting from the single-
ton coalition structure, the iteration continues until it runs out
of time or all nodes have be added to the tree, which implies
the complete solution space ΠA has been searched. In the
later case, the algorithm returns the optimal solution while in
the former case it returns the currently best solution.

An example of the partial search tree built by CSG-UCT
is shown in Figure 1. An iteration on the tree starts from the
root node

{
{a1}, {a2}, {a3}, {a4}

}
. In the selection step, the

UCB1 heuristic first selects tree node
{
{a1}, {a2}, {a3, a4}

}

{a1}, {a2}, {a3}, {a4}

{a1}, {a2}, {a3, a4}

{a1}, {a2, a3, a4} {a1, a2}, {a3, a4}

{a1, a2, a3, a4}

{a1, a2}, {a3}, {a4} {a1}, {a2, a3}, {a4}

{a1, a2, a3}, {a4}

Simulation

the root node

newly added node

not in the tree

Figure 1: A partial search tree built by the CSG-UCT method.

and then recursively selects
{
{a1, a2}, {a3, a4}

}
. Since this

(red) node is not currently in the tree, the tree is expanded by
adding it as a leaf of the tree in the expansion step. Then
in the simulation step, the value of the newly added node{
{a1, a2}, {a3, a4}

}
is initialized by a rollout search ending

with the grand coalition
{
{a1, a2, a3, a4}

}
. Finally in the

backpropagation step, the value of the newly added node is
propagated back to the root to update the value of the cur-
rently best solution along the path. The search tree grows
iteration by iteration until all CS ∈ ΠA are added in the tree.

4 Analysis and Discussion
Theorem 1. The CSG-UCT algorithm is complete given a
sufficient amount of time.

Proof (Sketch). Given a sufficient amount of time, CSG-UCT
terminates when all nodes have be added to the tree. Assum-
ing there exists a coalition structure CS′ that cannot be se-
lected by its parent CS in the tree. Therefore, CS′ cannot be
added to the tree by the iteration of CSG-UCT. This is contra-
dicted with the fact that every arm in the MAB will eventually
be pulled using the UCB1 heuristic [Auer et al., 2002]. By
induction, we conclude that all possible coalition structures
in ΠA will eventually be added to the tree if time is sufficient.
Thus, the CSG-UCT algorithm is complete.

Theorem 2. The CSG-UCT algorithm is anytime and always
returns the currently best solution.

Proof (Sketch). Note that the value of every searched node
is propagated back to the root node at the end of each itera-
tion. Therefore, the root node always maintains the value of
the currently best solution. When the algorithm stops, it can
return the currently best solution from the root node. After
an iteration, ∀CS : V̄ t(CS) ≤ V̄ t+1(CS) ≤ V (CS) holds.
With more iterations, more nodes will be searched and added
to the tree. As a result, the solution is constantly improved.
Thus, the CSG-UCT algorithm is anytime.

Relation with the DP method. The DP for CSG [Yeh,
1986] can be viewed as evaluating every movement upward
in the coalition structure graph by splitting one coalition into
two. It then stores the best movements in a table and finally
moves upwards in the graph, starting from the bottom node,
as long as it is beneficial to do so. In CSG-UCT, we perform
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best-first search downward in the coalition structure graph,
starting from the top node, by joining two coalitions into one.
We store the best movements in a tree structure and speed up
the search by combining several heuristics. Similar to DP,
CSG-UCT is also complete. In practice, it is often more effi-
cient than DP due to the use of the heuristics.

Relation with the C-Link method. The C-Link [Farinelli
et al., 2017] starts from the top node of the coalition structure
graph, iteratively computes the most suitable pair of coali-
tions, and move downward in the graph if joining a coalition
pair has benefit to do so. In contrast to CSG-UCT, C-Link
is memory-less and only keeps the currently best solution. It
can be viewed as a local search method and can easily get
stuck in local optimal. In fact, we also use similar local search
technique in the simulation phase and improve it using a tree
structure to memorize the intermediate results.

Implementation. There are several techniques that can
make CSG-UCT more memory-efficient. Firstly, the tree
nodes representing the same coalition structure can share a
single node in the memory. By doing so, the search tree has
at most the number of nodes as the coalition structure graph.
Secondly, if a subtree rooted with some coalition structure is
complete (i.e., with all branches ending with the leaf node of
the grand coalition), it can be removed from the search tree
in order to save some memory. There are also many well-
established techniques for MCTS [Browne et al., 2012] that
can be applied to speed up the search process of CSG-UCT,
such as parallel MCTS, MCTS on GPUs, etc.

5 Empirical Evaluation

We evaluated the performance of our algorithm on several
CSG problems including the six benchmark problems com-
monly used in the literature and a disaster response domain
that motivates our approach. We compared our algorithm
with GRASP [Di Mauro et al., 2010] and C-Link [Farinelli
et al., 2013], which are currently the leading approximate
methods for the CSG problem. All the algorithms are im-
plemented in Java and executed on a Intel(R) Core(TM) i7
CPU, 2.50GHz, with 8GB of memory.

In the experiments, we recorded the following two indica-
tive measures of the solution quality. Firstly, we computed the
Optimal Ratio = v(CS)/v(CS∗) between the value of the
computed solution CS and the optimal solution CS∗. This
measure shows how far the value of the computed solution is
from the optimal. Here, optimal solutions are computed us-
ing the integer programming formulation solved by CPLEX.
We limit the computation of the optimal solutions up to 20
agents because this is the maximum number of agents that
can be handled on our machine using CPLEX. Secondly, we
recorded the Baseline Gain = v(CS)−

∑
i∈A v({i}) between

the computed solution CS and the singleton coalition struc-
ture when the optimal solution is unavailable as the number
of agents are too large to be solved by CPLEX. This mea-
sure shows how valuable it is to form the computed coalition
structure as opposed to the singletons (i.e., the baseline).

#Agents 4 5 6 7 8 9 10 11 12 13
#Iterations 1 5 1 7 11 38 5 33 68 14

Table 1: Maximal Iterations for Finding Optimal Solutions (NDCS)

5.1 Common Benchmark Problems
Note that the common practice in evaluating CSG algorithms
is to choose some standard instances of the problem and com-
pare the various algorithms that exist without giving them a
priori knowledge of the type of utilities they are presented
with. Although our algorithm can solve CSG problems with
any types of utilities, we benchmark with six types of utilities
with the following commonly used distributions:

• Uniform, as studied in [Larson and Sandholm, 2000]:
v(C) ∼ U(a, b) where a = 0 and b = |C|.
• Normal, as studied in [Rahwan et al., 2007]: v(C) ∼
N(µ, σ2) where µ = 10× |C| and σ = 0.1.
• Modified Uniform, as studied in [Service and Adams,

2010]: v(C) ∼ U(0, 10 × |C|), and v(C) is increased
by a random number r ∼ U(0, 50) with probability 0.2.
• Modified Normal, as studied in [Rahwan et al., 2012]:
v(C) ∼ N(10 × |C|, 0.12), and the team value v(C)
is increased by a random number r ∼ U(0, 50) with
probability 0.2.
• NDCS, as studied in [Rahwan et al., 2009]: v(C) ∼
×N(µ, σ2) where µ = |C| and σ =

√
|C|.

• Agent-based, as studied in [Rahwan et al., 2012]:
v(C) =

∑
i∈C p

C
i where pCi ∼ U(0, 2pi) and pi ∼

U(0, 10) is a random power for agent i.

Figures 2(a-f) summarize our experimental results on the
common benchmark problems with the utilities using the dis-
tributions described above. We tested CSG-UCT with dif-
ferent size of iterations (i.e., K = 102 and K = 105). As
we can see from the figures, CSG-UCT outperforms both
GRASP and C-Link with better solution quality in all the
tested instances. In particular, with more iterations (e.g.,
K = 105), CSG-UCT can find the near-optimal solutions
for all the tested problems. This set of experiments shows
the advantage of CSG-UCT comparing to the state-of-the-art
approximate methods. As we can see, C-Link already per-
formed quite well with the optimal ration of about 0.9 in all
the six benchmark problems. Our algorithm can still make
significant improvement comparing with C-Link. This con-
firms the effectiveness of our algorithm.

Table 1 illustrates the maximal number of iterations
required for CSG-UCT to find the optimal solution on
the NDCS benchmark problems with different numbers of
agents. As shown in the table, CSG-UCT is very efficient and
only requires few iterations (mostly less than 20) to find the
optimal solution for the tested problem instance. It is worth
noting that the number of searched coalition structures is usu-
ally much smaller than the overall solution space.

As aforementioned, CSG-UCT is anytime that can stop at
anytime and return the currently best solution, and continue
to improve the solution until it converges to the optimal if
more time is available. To demonstrate this property, we con-
duct experiments on the NDCS benchmark problem with 25
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(c) Modified Uniform (Optimal Ration and Baseline Gain)
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(d) Modified Normal (Optimal Ration and Baseline Gain)
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(e) NDCS (Optimal Ration and Baseline Gain)
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(f) Agent-Based (Optimal Ration and Baseline Gain)
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(g) Disaster Response (Optimal Ration and Baseline Gain)
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Figure 2: Experimental Results on Six Common Benchmark Problems and the Disaster Response Domain

agents. Specifically, we vary the number of iterations used in
CSG-UCT and observe how it affects the solution quality and
runtime of the algorithm. As we can see from Figure 2(h),
the solution quality constantly improves when the number of

iterations increases. As expected, the runtime increases lin-
early when the number of iterations grows. In practice, we
can repeatedly run the sampling steps until it runs out of time
and return the currently best solution. This is appealing in
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domains where time and resources are limited.

5.2 Case Study: Disaster Response
Our work is motivated by a disaster scenario [Ramchurn et
al., 2015; Ramchurn et al., 2016], in which a satellite, pow-
ered by radioactive fuel, has crashed in a sub-urban area. De-
bris is strewn around a large area, damaging buildings and
causing accidents and injuring civilians. Moreover, radioac-
tive particles discharged from the debris are gradually spread-
ing over the area, threatening to contaminate food reserves
and people. Hence, emergency services are deployed to evac-
uate the casualties and key assets before they are engulfed by
the radioactive cloud. As in the scenario [Ramchurn et al.,
2016], the mission of emergency responders is to evacuate 4
types of targets as: victim, animal, fuel, or other resource,
which require a combination of 4 roles played by the respon-
ders as: medic, fire-fighter, soldier, or transporter. Before
being despatched, hundreds of human responders must co-
ordinate together and form teams quickly in a way that the
overall performance is maximized.

Generally, given a team of responders C, there are many
ways to estimate its team performance and define the utility
v(C) required by team formation algorithms. As a case study,
we consider a simple model as follows. Each responder i has
been assigned a value cri ∼ U(0, 10) to indicate her capabil-
ity to play the role r based on her training, past experience,
body condition, etc. For each target k, the upper bound of
the team performance is defined as: p̄Ck =

∑
r∈Θk

∑
i∈C c

r
i ,

where Θk is the set of roles required by the target. Then, the
utility for the team is denoted as: v(C) =

∑4
k=1 p

C
k , where

pCk ∼ U(0, p̄Ck ) is the estimate of the performance of team
T on target k subject to uncertainty. Note that this is just a
specification for the team utility. In practice, we can use any
utility function designed by the domain experts.

Figure 2(g) reports the experimental results on the disaster
response domain. As we can see from the figure, CSG-UCT
outperforms both GRASP and C-Link to achieve more gains
comparing to the baseline performance if no team is formed.
Notice that this domain with hundreds of responders is in-
tractable for existing optimal algorithms. Thus, we must use
approximate techniques to solve such CSG problems. How-
ever, existing approximate methods such as GRASP and C-
Link are not anytime and have no guarantee on solution qual-
ity. Therefore, their performance cannot be improved even
more time and resources are available.

6 Related Work
Optimal approaches for solving CSG are mostly based on
Dynamic Programming (DP). The first DP algorithm [Yeh,
1986] works by iteratively determining, for every coalition,
whether it is beneficial to split it into two coalitions and
storing the best split. The DP algorithm computes an op-
timal coalition structure in O(3n) time and may take hours
to handle 30 agents on a modern desktop computer [Rah-
wan et al., 2015]. Improvements such as ODP and IDP were
made by avoiding some operations of DP. Following early
efforts [Sandholm et al., 1999; Dang and Jennings, 2004]
on identifying the worst-case guarantees if only subspace is

searched, an anytime algorithm, named IP [Rahwan et al.,
2009], was proposed based on the integer partition-based rep-
resentation. To further boost the performance, approaches
such as IDP-IP and ODP-IP [Michalak et al., 2016] were pro-
posed to combine techniques of DP and IP. These algorithms
only take seconds to handle 30 agents but is unlikely to solve
problems of 40 agents or more on a modern desktop com-
puter [Rahwan et al., 2015]. Generally, optimal algorithms
are not scalable to large problems with more than 40 agents.

A number of heuristics have been developed to solve large
CSG problems approximately, ranging from greedy meth-
ods [Shehory and Kraus, 1998; Di Mauro et al., 2010] to
genetic or local search algorithms [Sen and Dutta, 2000;
Keinänen, 2009]. Among them, GRASP [Di Mauro et al.,
2010] is a greedy method that, at each iteration, a coalition
structure is constructed greedily and then a local search is
used to improve the coalition structure by exploring its neigh-
bours. C-Link [Farinelli et al., 2013] is another greedy based
approach motivated by data clustering methods. It starts from
the structure of all singleton coalitions and iteratively selects
a pair of coalitions to be merged. The pair of coalitions are
chosen based on the suitability function in a myopic manner,
without taking into consideration the future consequences of
this choice. Hence, it can be trapped in local maxima of the
objective function. To date, both GRASP and C-Link are the
leading approximate CSG algorithms with good empirical re-
sults. Although approximate methods return solutions rela-
tively quickly, they do not provide any guarantees on solu-
tion quality. Some efforts have been made to bound the so-
lution quality but they usually require the characteristic func-
tion (i.e., the utility function) to have some special structure
(e.g., the m+ a functions as in [Farinelli et al., 2017]).

Recently, several approaches [Rahwan et al., 2011;
Bistaffa et al., 2017] were proposed to exploit specific do-
main structures and improve the performance. Existing CSG
algorithms can be speeded up using GPU [Pawłowski et al.,
2014] or multi-core machines [Cruz et al., 2017]. However,
scalability is still an issue. A comprehensive survey on the
CSG algorithms can be found in [Rahwan et al., 2015].

7 Conclusions
This paper presented a scalable algorithm based on UCT for
the CSG problem. Specifically, we proposed the CSG-UCT
algorithm that builds a search tree by sampling the solution
space of coalition structures. We show that CSG-UCT is
complete and will eventually converge to the optimal given
sufficient number of iterations. Moreover, it is anytime and
can return the current best solution if time is limited. In the
future, we plan to further improve the performance on very
large CSG problems by exploiting the properties of coalition
structures and test our method on real-world applications.
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