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Abstract

We propose a novel online planning algorithm for
ad hoc team settings—challenging situations in
which an agent must collaborate with unknown
teammates without prior coordination. Our ap-
proach is based on constructing and solving a series
of stage games, and then using biased adaptive play
to choose actions. The utility function in each stage
game is estimated via Monte-Carlo tree search us-
ing the UCT algorithm. We establish analytically
the convergence of the algorithm and show that it
performs well in a variety of ad hoc team domains.

Introduction

Collaboration without prior coordination is a recognizédk
lenge in multi-agent systems reseaf@toneet al., 201(.
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ning can take place completely offlii€euken and Zilber-
stein, 2008. Others allow agents to coordinate online, but as-
sume that they employ identical planners and pre-detexdnine
coordination protocol$Wu et al, 2011. In ad hoc teams,
agents must cooperate with unknown teammates such as ran-
dom persons or robots programmed by different people. Such
collaboration without pre-coordination is becoming irase
ingly important in multi-agent systems research.

We focus on a certain type of ad hoc teams in which a target
agent knows the number of teammates as well as a set of their
feasible actions. The system state and the joint actioreplay
at each step are fully observable by the agent. Howevel, loca
features of an individual teammate such as sensing, acting,
communicating and decision-making capabilities are mdde
from the agent. This represents a large array of challeng-
ing ad hoc team problems, particularly scenarios that iresol
random people. In the above example, the robot may have
information about the airport and the range of actions that a

Consider, for example, a passenger arriving at a foreign ai
port for the first time, not knowing the native language. An
autonomous robot is deployed at the airport to provide ser
vices for passengers. It can help passengers with comm
tasks such as baggage pickup or locating a boarding gaéﬁ,]
The robot has no prior knowledge of each passenger’s needs
but should be able to collaborate with a passenger and hel
perform some common tasks. This is an example oadn

hoc teamsetting, where the fundamental objective is to co : .
laborate without pre-coordinatidStoneet al, 2009; 2010; N €ach game, we usgased adaptive pla{BAP) [Wang and

Stone and Kraus, 2010; Barret al, 2011. The robot may Sandholm, 200Bwhich is a variant ofictitious playin game
know in advance the airport facilities, but not the specificth€ory. Originally, BAP was designed to maintain coordi-

needs and preferences of a passenger. The challenge is to cigtion in fully cooperative repeated games. It is an appeal-
ate such an autonomous agent that can efficiently and robudfld @pproach to ad hoc team settings because it is rational
ly work with other agents on tasks that require teamwork. Ir@"d convergenteven in the presence of heterogeneous agents
practice, many human-robot teams are ad hoc. Application{/¢ €xtend BAP to ad hoc team problems and analyze its
include rescue robots brought to an earthquake site from diff€"formance both theoretically and empirically. When con-

ferent parts of the world, or e-commerce cooperative agent&ructing each stage game, the utility function is estimhate
created by different companies with different standards. ~ Monte-Carlo tree searchusing the UCT algorithniKocsis

Planning under uncertainty for teams of agents has beef’d Szepesvari, 2006 UCT is a Monte-Carlo method for
widely studied using various mathematical models such aBlanning in large domains. It has outperformed previous ap-
Multi-Agent MDPs (MMDPs)[Boutilier, 1999 and Decen- proaches in challenging games such adGelly and Silver,
tralized POMDPs (DEC-POMDP§Bernsteinet al, 2004. ~ 2007. The key advantage of a Monte-Carlo method is that
Despite recent progress, most of the existing approaches ri réquires only a generative model—a black box simulator—

ly on substantial pre-coordination. Some assume that plaf@king it particularly suitable for our setting. We exten@-U
T to search the large policy space of unknown teammates.

The underlying MMDP is used as a generative model. Given

Thuman may perform. But it cannot have a model characteriz-
ing each person. The only way for the robot to know people

is by interacting with them and observing their behaviors. T
cceed in such ad hoc settings, an agent must reason about
e interaction history and adapt its actions to its tearemat

"We propose a novel online planning algorithm for ad hoc
eams. In our approach, the planning problem is approximat-
|-ed by solving a series stage gamesone for each time step.
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a state and a joint action, it outputs samples for UCT, includ It is worth pointing out that the MMDP model represents a
ing the next state and reward. The key contribution of ourfully cooperative decision problem, since the reward figrct
work are a general framework for planning in ad hoc teamjs common. In other words, all the agents share the same goal
and the first algorithm that combines the advantages of BABf maximizing the total expected reward of the team.
and UCT in these settings.

The paper is organized as follows. We first describe the2.2 Ad Hoc Agent Teams

essentials of MMDPs and the ad hoc team settings that Wg, 54 hoc teansettings, a group of agents with different deci-
target. Next we introduce the online planning algorithm andsjoy models and capabilities must cooperate so as to complet
discuss its properties. Then we present experimentaltresulcommon tasks, yet they have no prior opportunity to coordi-
s on several domains, and conclude with a summary of thgate Stonet al.[2010]. Agents in ad hoc teams are likely to

contributions and future work. have heterogeneous sensing and acting capabilities that ma
not be common knowledge. Furthermore, they may have dif-
2 Background ferent communication protocols or world models. Thus nei-

ther pre-coordination nor execution-time negotiationfase
sible. Rather, an agent must reason about the interacttbn wi
ijifferent teammates and adjust its behavior to cooperate wi

In this section, we review the Multi-agent Markov Decision
Process (MMDP) frameworiBoutilier, 1999 and introduce
the setting of ad hoc agent teams. Although our ultimate go
is to build a single autonomous agent, teamwork consider
tions are essential for the agent to succeed in this setting.

hem on the fly. Although this problem pertains to teamwork,
he fundamental challenge is to build a single autonomous a-
gent with such capabilities, not an entire team.
2.1 The MMDP Model Atd hoc f&eamif rgp;(hesenta\t/tgry broadtctc))ncept in n:jutlti-aglcleng
. - systems. Agents in these settings must be prepared to €olla
Formglly, a Multi-agent Markov Decgsmn Proce;s (MMDP) o)r/ate with vgrying types of team?nates. In ag hapmarteam
is defined as a tupldl, 5, {4}, P, R, s”, ), where: formation[Kildare, 2004, teamwork situations are organized
e [ is a set of agents, identified bye {1,2,--- ,n}. along three dimensions: teammate, team and task character-
. 0; - istics. To simplify the challenge, it is necessary to irlyia
e Sisasetof states wheses S, ands” is the initial state. limit the scopepopghese charac%eristi&toneet al. g01d. Pr"]
e A; is a set of actions for agenitwherea; € A;, and  this paper, we restrict ourselves to settings where: (13yse
A = xj_, A; is the set of joint actions wheree A. tem state is fully observable by the agent; (2) the agent know
e P:SxAxS —[0,1]is the transition function, where the number of teammates as well as a set of their feasible ac-
P(s'|s, @) denotes the probability of transiting to a new tions; (3) a generative model (simulator) of the ad hoc team i
states’ when the agents take joint actiarin states. available for drawing samples of team actions; and (4) at the
. . . end of each step, the agent receives an observation of tite joi
o R:5xA— Ris the reward function, wherBi(s,d@)  action taken by the team. The team can be homogeneous or
denotes the reward received by the team when the agenfizerogeneous and has no direct communication.
take joint action? in states. We make no assumptions about the teammates’ acting and
e ~is the discount factor whele< v < 1. sensing capabilities, or their decision models. Teammates
At every decision cycle, each agent independently choos- may even be unaware th:at they take partin an ad hoc team.
es an actions; € A, and the joint action of the team — 'I_'he space of teammates feas_lble actions |_ncludes all the ac
(ar,as,--- ,ay) is executed in the environment. As the sys- 'gons that the agent can perceive. In practice, an agent must
tem moves from state to statest*+! according to the transi- e able to ,recogm.ze these actions in order to reason about
tion function, all the agents receive an identical rewarde T teammates’ behaviors. The generative model, represested a

goal of the agent team is to determine a control strateggdaall an MMDP, specifies the task characteristics. In some appli-

joint policy that maximizes the expected long-term accumu—cat'ons SUCh as human-robot interaction, a closed—form rep
lated reward of the tearnt [Zoo Y R(s! d¢)|80] resentation of the system dynamics may not be available, but
t=0 ’ :

A local policyfor agent is a mappingr, : S x A; — [0, 1] a black-box simulator (e.g., USARSifhewis et al., 2007)

, - Co . often exists. The policy space of teammates is typically
wherer; (a;|s) defines the probability of agentaking action o arge. Without pre-coordination, the agent must raaso
a; when the system state §s A joint policy is a vectorr =

>l . about the past action sequences of its teammates online, lea
(w1, 72, -+ ,my,) Of local policies, one for each agent. Given

a joint policy, the value of each statec S can be defined quickly from these interactions, and act accordingly.

recursively using the so-called Bellman equation: ) )
3 Online Planning for Ad Hoc Teams

VT (s) = Z 7(d)s) | R(s,a@) + v Z P(s')s, @)V (s)| . In this section we propose tr@nling Planning for Ad.Hoc
oy o Agent 'I_'eaméOPAT).aIgorlthm. On]me planning prowde_s a
convenient mechanism for reasoning about the interacgon a
Similarly, the Q-function is defined as follows, for eachnjpi it unfolds, and making decision during execution time. An
actiond and states, when the agents follow joint policy: agent operating as part of an ad hoc team must learn to coop-
erate with different types of teammates, taking into actoun
Q(s,@) = R(s,d) +~ ZS,ES P(s'|s,a)V™(s'). (1)  future steps when optimizing its current action.



3.1 Overview of the Online Planning Algorithm Algorithm 1; Online Planning for Ad Hoc Teams

Our online planner interleaves planning and exect/tinen- procedure ONLINE PLANNIG (7))

ner and Nebel, 20Q9selecting one action at a time for the h 0,r+ 0,5« s /| start with state ey
current step. To estimate the value of each action, it perfor for =1 to T do

s forward search. In this planning process, the agent must if agenti then // run online in parallel.
consider the strategies of its teammates and reason about al foreachd € A do

| the possible outcomes. Intuitively, a selfish policy can be | Q(s,d) « TREESEARCH(s, @, h)
arbitrarily bad if it ignores cooperation; a robot cannolphe I's < STAGEGAME(s, Q)

passengers if it ignores their reactions. The robot must be [, « VIRTUAL GAME(T,)

prepared to adjust its behavior based on the interaction. a; < BIASEDADAPTIVEPLAY (I's, i [s])
Definition 1. A stage gamd’'s = (I,{A;},{Q;}) is a else

normal-form game wheré is a set of players4; is a set | a_; < TEAMMATEACTIONS()

of actions and); is the utility function for playet € I. Itis
cooperative when all players have the same utility function

From a game-theoretic standpoint, ad hoc teamwork can
be modeled as a large stochastic game with unknown player- -~
s[Leyton-Brown and Shoham, 20D8However, the resulting
game can be intractable, particularly with long horizons. T
address that, our online planner generates actions byxapproa team Markov game can be decomposed into a sstage
imately constructing and solving smaller games cadiedje  gamesl's = (I, {A;}, @), one for each state € S, where
games one gamel,, for every states € S. At each step, Q(&) is the the utility function. Each stage game is also fully
the agent performs game-theoretic reasoning using iteurr cooperative, just like team Markov games. It is known that
knowledge of the state and teammates, much like the classi team Markov game converges to a Pareto-optimal Nash e-
cal one-step lookahead approach to game playing. Thus, theiilibrium if all the players coordinate in an optimal Nash
overall problemis decomposed into a series of smaller gamesquilibrium at each stage garfig, Vs € S [Boutilier, 1994.
Performance depends on how each stage game is constructedBiased adaptive plagBAP) [Wang and Sandholm, 20D3
and how the agents choose actions. is a variant offictitious play It relies on the observation that

To build a stage game, it is necessary to define a utilitythe past action choices of other agents can be used to esti-
functionQ (@) that ideally should capture not only the imme- mate their policies. Given a stage gaife BAP constructs
diate payoff of a joint actiomi,. but also its .expectedl future avirtual gamel’, = (I, {Ai},@, WhereQ(ﬁ) — 1if qis
value. State-of-the-art techniques for online planningmof -, optimal joint action for, and@(a) — 0 otherwise. We

rely on heuristics to evaluate the resulting outcomes @it joi v o Al . - )
actions. Unfortunately, it is hard to determine good heiass denoted” = {a € A|Q(a) = 1} the optimal joint action set

for ad hoc teams due to the lack of knowledge about teamin I's and Hy, = (@-m*t,... @t ") them most recent
mates. Such a heuristic must inherently vary when used iplays inT's at time¢. Given the virtual gamé'; and them
conjunction with different teammates. To develop a genermost recent play#f},, the main procedure of BAP is shown
al framework for ad hoc teams, we incorporate Monte-Carldn Algorithm 2, which returns ageris best response action.
tree search to estimate the payoff of each joint action. If conditionsC; or Cz of Algorithm 2 are met, agerntcon-
After constructing a stage game, the key question is how teludes that all teammates have coordinated in an actiai of
reason about the interaction and play adaptively. Thisaé-ch Therefore, it selects the best-response aatjowith respect
lenging because the characteristics of teammates arerhiddéo the optimal joint action sed*. If none of these conditions
and the only clue is the interaction history. In this work, we hold, agent estimates the expected pay@f(a;) for each
usebiased adaptive plaip create airtual gamel’, based on ~ Of its actions; € A; using thek samples of{};,. Intuitively,
a set of “optimal” joint actions according to the estimatattv  £(a;) is an estimate of the actian given the average poli-
ue of the tree search. The best response action of the virtuly Of its teammates according i6).. The action trace played
game is chosen by sampling the interaction history. by teammates can be viewed as an indication of _the_|r policy.
As shown in Algorithm 1, ageritinteracts with other mem- Using them most recent plays instead of the entire interac-
bers of the ad hoc team online by: (1) estimating the value ofion allows BAP to cope with situations where teammates are
each joint action with Monte-Carlo tree search; (2) corwgtru  @lso adjusting their strategies. _ _
ing a stage game and a virtual game; and (3) choosing an The good property of BAP is that, even in a group with
action using biased adaptive play. The following subsestio heterogeneous agents such as an ad hoc team, it is stilbable t

hls] < h[s] o @, (s',7") ~ ENVIRONMENT(s, @)
| rertyt s e s

return » // the total accumulated reward.

explain each part in detail. converge to the best-response policy. In ad hoc teams, team-
mates may be constrained (e.g. having reduced action sets)
3.2 Adapting to Strategies of Teammates and thus follow some sub-optimal strategies. The auxiliary

To play adaptively with unknown teammates, we borrowvirtual games', in BAP are weakly acyclic with respect to

some game-theoretic ideas. MMDPs are equivalem¢am  the bias setd* that contains only optimal policies. This en-
Markov games(I, S, {A;}, P,{R;},~) where all players sures thatagents with BAP will eventually converge to githe
share an identical payoffvi,j € I,R; = R;. Generally, a strict Nash equilibrium of'; or a Nash equilibrium ir4*



Algorithm 2: Generative Biased Adaptive Play

procedure BIASEDADAPTIVEPLAY(fS,an)
if |[HL,| < mthen [/ generate more samples.
| Hj, < SAMPLEPLAY (s, Hy,, m)

Hy, + DRAWKSAMPLES(K, H,)

if 3" € A*,Vd € Hy, (a—; = a’;) then I
L (a7,a”;) ¢ argmax_y {t'|@" € Hy A € A*}
elseifdad € A, (@ € H, Nad € A") then I
| ai ~{a; € Ail(as,aZ;) € A"}
else

Va_;, N(a—;) < COUNTTIMES(a_; € Hy)
Vai, EP(ai) < 3, .ca_, Q(ai, a,i)%ﬂ')
a; ~{a; € Ai|EP(ai) = max,/ca, EP(a;)}
| return o/ the best-response action.

procedure SAMPLEPLAY (s, HY,, m)

N(s) < |H |+ 1

foreachd € A do

| N(s,@) < COUNTTIMES(G@ € H,) + 1

for k=|H/,| to m do
@+ argmaxgeq Q(s,d@’) + ¢ 11\;;(1:75;))
N(s) « N(s)+1,N(s,@) «+ N(s,a@) +1
Hy, + Hy, 0d

return HY, // the augmented joint history.

with probability 1[Wang and Sandholm, 2003

actions selectively. To achieve this, Monte-Carlo treecea
builds a lookahead tree in a sequentially best-first ordee T
nodes of the tree keep track of estimates of action values at
the sampled states from earlier simulations. The value-gath
ered during a simulation is added to the nodes incrementally
Therefore, if some state is visited again, the estimatddract
values can be used to bias the choice of actions at that state.

Instead of greedily selecting the action with the highekt va
ue, the UCT methofKocsis and Szepesvari, 200éhooses
actions using the UCB1 heuristi&uer et al, 2004. Each
node is viewed as a separate multi-armed bandit where the
arms correspond to actions and the payoffs to the estimat-
ed value. As Kocsis and Szepesvari show, the probability of
selecting the optimal action converges to 1 as the number of
samples grows. The UCT algorithm balances between testing
the current best action and exploring alternatives to ensur
that no good actions are overlooked due to early estimation
errors. Domain knowledge can be used to initialize the tree
nodes in the UCT algorithm. It narrowly focuses the search
on promising states and thereby speeds up converg&ete
ly and Silver, 2007.

The balance between exploration and exploitation is im-
portant when searching over the teammates’ policy spaee. In
stead of searching the entire policy space of the MMDP, we
want to concentrate on regions of actions that are more like-
ly to be played by teammates. Meanwhile, we do not want
to miss other actions that teammates may play in the future.
Therefore, BAP is used at each step of the tree search to bias
the action selection based on the interaction history. gesta
gamel’; is maintained for each tree node and updated with

One weakness of the original BAP method is that a state new value€) (s, -) when the node is reencountered.
must be visited before one can sample from the action history |n Algorithm 3, a tree node is generated for each encoun-
h[s]. This can be satisfied in repeat games for which BAP wasered state. Each node contains a valti s, @) and a visita-
designed, but not in ad hoc settings, especially duringdine e tion countN (s, @) for each joint actiorii. The overall visita-
ly stages of interaction or when the state space is very largeion count for state is N(s) = Y zc 4 N(s,d@). Additional-

To cope with this, we sample joint actions from tleasible
space using the UCB1 heurisfiduer et al, 2004, which

ly, a stage gamg; is constructed for each node and updated
each time the node is reencountered. In the UCBL1 heuristic,

balances the tradeoff between the value of a joint action anghe augmented term /22~ is an exploration bonus that is
. . T N(s,a’)

the frequency of choosing it. Other heuristics such as the agjghest for rarely tried actions; the scalar consteistthe rel-

tion histories of “nearby” states are useful when a suitableyiye ratio of exploration to exploitation. When a node i$ no

distance measure is knowllelo and Ribeiro, 2008

The construction of a stage garfig requires that agenit

in the search tree, the search tree is expanded and thetrollou
method is used to estimate the value. The search déjgh

ity of T's. It is worth noting that this is different from the op-

timal Q-function of the MMDP and cannot be computed of-3 4  Discussion and Analysis

fline since the characteristics of the teammates are unknow
We therefore estimate the utility @f; using Mote-Carlo tree

search, as detailed in the next subsection.

3.3 Planning by Monte-Carlo Tree Search

?n principle, it is straightforward to model an ad hoc team
as a DEC-POMDP with heterogeneous actions and obser-
vations. For agent, the observation set can be defined as:
Q; = {(s,a_;)|s € S,a_; € A_;} —pairs of states and
teammates’ actions, with the following observation fuoiti

The Monte-Carlo rollout method provides a simple solution "~ " . . ; ,
for estimating the value of stateusing random policies. It V(s a";) € i, O((s',a";)|s, @) = 6(s" = 5)-6(a’; = a_)
generates sequences of states using a simulator starting wiwhered(p) is 1 if p is true and 0 otherwise. However, in ad

s until reaching a terminal state or the planning horizon. Thehoc team settings, some knowledge about the teammates is
value of states is estimated by the mean return Aftrials  hidden from the planner. Thus, most existing approaches for
starting froms. Intuitively, if we sample the stateinfinitely DEC-POMDPs do not apply to ad hoc team settings. In this
often using an optimal policy, the averaged return will con-paper, we assume that the system state is fully observable by
verge to the optimal expected value of Hence the perfor- the agent so we can focus on playing adaptively with many
mance of the rollout method can be improved by samplingypes of teammates. Our work can be extended to partially



Algorithm 3: Biased Monte-Carlo Tree Search

procedure TREESEARCH(s, d, h)
for k=1 to K do

h'[s] - h[s] o @, (s',7) ~ MMDP(s, @)
L Tk < 7 + 7y - SIMULATION (s, b/, 0)

| return LS i Il the averaged value.

procedure SIMULATION (s, h, t)
if t > T return 0 // reach the search depth.
if s ¢ TREEthen
TREE <« INITIALIZE(s,Q, N,T's)
L return ROLLOUT(s, t)

I's < VIRTUAL GAME(T';)

a; + BIASEDADAPTIVEPLAY (s, hm[s])

- —/ log N (s
@ < argmaxg/|q;.a_,ca_, Q(s,d) +c¢ N(s,a/))

h'[s] - h[s] o @, (s',7") ~ MMDP(s, @)

7 < 7' + - SIMULATION (s', A’ t + 1)
N(s) + N(s)+1,N(s,d) « N(s,a)+1
Q(s,d)  Q(s,@) + “FH%D

I's «+ STAGEGAME(s, Q)

| return r /I the long-term reward.
procedure ROLLOUT(s, )

if t > T return O

(_7: ~ WRQLLQUT(’|S), (S/7 7') ~ '\/”VlDF)(S7 (_7:)

useful collaboration. While our general framework does not
consider the learning capabilities of ad hoc teammates, thi
can be addressed by incorporating different backup methods

The design of an ad hoc agent and its performance greatly
depend on how much information is known about the domain
and potential teammates. In this work, we assume the domain
is known, while the behavior of teammates is unknown. They
can be rational, irrational or somewhere in between. A ipic
domain is the pick-up soccer game where every player knows
the rules of the game, but has no idea about the strategies of
the other players and no chance to pre-coordinate.

Some parameters of OPAT depend on the characteristics of
the teammates. The number of actions retrieved from histo-
ry was originally introduced by BAP for adapting to team-
mates’ behaviors. Presumably lower values will work better
when the teammates are adapting in response to the agent’s
actions. The value function of the underlying MMDP can
be used as domain knowledge to initialize the tree nodes in
UCT and bias the choice of actions. It should be noted that
the MMDP values are overestimates and may not be useful
when the teammates are irrational. Long term autonomy can
be achieved by considering the discounted rewards in UCT.
This can be done simply by stoping the search when reaching
some depthD with v < e wherey is a discount factor and
e is a relatively small number.

| return r 4 v - ROLLOUT(s',t + 1)

4 Experiments

Our experimental evaluation follows the paradigm intrastlic
observable domains by replacing the current state with a b2y Stoneet al. [2010]. We chose a set of problem domain-
lief state or internal memory state. s and designed a variety of ad hoc teams Wlth_ different a-

N ) T gents. Then, we randomly replaced an agent in each team
Proposition 1. Given an infinite number of samples, OPAT \yith the agent running the OPAT algorithm and recorded the
will converge to the best-response actions when all the 'tearﬂ:eam performance, averaging results over 100 runs. The s-
mates play an optimal MMDP policy. elected domains are common benchmark problems from the

DEC-POMDP literaturg offering different initial conditions
Proof (sketch).As shown by Wang and Sandholm [2003], that can be sampled. Performance is measured by the joint
BAP converges in the limit to either a strict Nash equilibri- 3ccumulated reward over some fixed tiffie In the selected
um or a Nash equi”brium im*. The beSt-reSponse action set domains’ coordination is essential for success.

A is determined by the estimated values of UCT. The policy e created two types of teams with different unknown
space searched by UCT is constrained by the choice of ageffammates (UTM) in terms of their acting and sensing capa-
i's actions, which depends on the past action sequences of thgities: UTM-1 agents play a sequence of actions according
entire team. If all teammates coordinate by using an optimaly some pre-defined patterns, while UTM-2 agents maintain
policy of the underlying MMDP, BAP is convergentand will 3 pelief based on their observations and choose actions us-
eventually select the best-response actions. Thus &g@tt  jng the optimal Q-function. The pre-defined patterns are se-
tions in conjunction with its teammates’ actions conséital  quences of random actions with some fixed repeated lengths
optimal joint policy for the entire team. According to Kossi that are randomly chosen at the beginning of each run. For
and Szepesvari [2006], the value function returned by WCT i example, given a random repetition value of 2, the action pat
optimal given infinite samples. Therefore, OPAT returns thegrn may be “AACCBBEE” where “ACBE” are random ac-
best-response actions by induction. U tions. Some pre-defined random seeds are used to guarantee
) ) ) that each test had the same action sequences. Note that in ad
A backup method is used in OPAT when no history of apqac teams, agents may not be aware that they take part in a
particular state exists. It assumes that the other agetits Wkeam or they may not be capable of working efficiently with
act sensibly until it learns otherW|sg._ .Th|s is important fo giher agents. UTM-1 agents are referred to as “irrational” s
ad hoc teams because an agent’s initial actions could affegyce they don't follow the optimal course of actions. Thelgoa
t the behaviors of other actors. In some sensitive domaings yTM-1 is to test if OPAT can adapt well when its team-
involving interaction with humans, it might be safer to pru- pnates’ policies are not particularly effective in advarngihe

dently perform actions that are less reliant on the teamsnatgoint goal. For UTM-2 agents, we simulate different sensing
while obtaining some understanding of their policies. How-

ever, this could be misinterpreted by the teammates angi dela ' nitpuiusers.isr.ist.utl pt"mtjspaan/decpomdpfinde x_en.html
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Table 1: Results for Different Ad Hoc Teams
| Ad Hoc Teammatq| OPAT | MMDP | RAND | 007 OPAT-vs-OPAT —+— | Upper Bound
Cooperative Box Pushing7=20, (-41.71,-20.16 250 | O D
UTM-1 35.25 | -25.97 | -29.62 g 200  -MMDP-vs-MMDP
UTM-2 23.30 | -21.65 | -26.33 S 0l !
Meeting in 3x3 Grid T=20, (1.75, 1.87 ) o
100 _
UTM-1 5.20 3.14 1.47 /%/P
UTM-2 630 | 465 | 1098 50 1 Lower Bound
- — o L
Multi-Channel Broadcast 7=20, (5.45, 17.40 ) 0 10 20 30 40 50 60 70 80 90 100
UTM-1 13.15 10.15 9.25 Number of Samples
UTM-2 7.15 17.40 9.30

Figure 1: Comparison of different pairs of algorithms on the
Cooperative Box Pushing domaifi£€20).

capabilities by varying the level of noise in teammatesesbs
vations. Generally, UTM-1 agents are irrational with réspe ., jisions and maximize throughput. RAND broadcasts mes-
to teamwork while UTM-2 agents are rational, but having on-gageq randomly regardless of collisions. Intuitively, OPA
ly partial observations of the system state. may wait for its teammate to broadcast in order to avoid col-
Table 1 shows the results of an agent running OPAT angjsjons, but sometimes the teammate fails to broadcastalue t
the optimal MMDP policy computed offline by value itera- jis nojsy sensing. Hence the channel is more likely to be idle
tion. .Results are also provided for an agent executln_g.rremdo On the other hand, MMDP makes very strong assumptions
policies. Note that the MMDP agent is very competitive be-apoyt its teammate’s behavior and will broadcast according
cause it fully observes the system state and knows the optimg, the optimal Q-function. On average, MMDP performs bet-
value of each joint action in every state. The pair of valdes a tgr than RAND. In fact, in the experiments, we observed the
ter each domain name are the expected value of a team Wiﬂallowing average channel idle time: OPAT 62.25%, RAND
two UTM-1 agents (denoted by and a team with two UTM- 5294, and MMDP 9.75%.
2 agents (denoted by), without replacing agents. The computational cost of OPAT depends mainly on the
Figure 1 shows a comparison of OPAT when the teammatgearch depth and the sample size of UCT. One of the key ad-
runs an identical copy of OPAT or the optimal MMDP policy. yantages of Monte-Carlo methods is that they scale very well
The goal is to show the performance of OPAT when all teampyer the state space. For problems with many agents, more
mates are rational and have the same capabilities. Note thggphisticated techniques should be used to search over the
OPAT coordinates well in different settings without know- |arge joint action space. The sample size of OPAT provides
ing the teammates’ capabilities or policies. Its perforo®n 3 good tradeoff between value and runtime. Intuitively, the
improves substantially by increasing the number of samplesyntime will increase when larger sample size is chosen. In
The values of “MMDP-vs-MMDP" and *MMDP-vs-RAND"  the experiments, we observed the following average runtime
remain constant for different sample sizes because neither of OPAT for each domain (seconds per step): Box-Pushing
gents uses samples for decision making. They serves as taeo59, Meeting-in-Grid 0.122, Broadcast-Channel 0.008. A
upper and lower bounds on the values in this domain. Figure 1 shows, the value grows with the number of samples
Although all the tested domains are common DEC-when running with MMDP or OPAT teammates. As indicat-
POMDP benchmarks, we did not compare OPAT with ex-ed by Proposition 1, it converges to the optimal value as the
isting DEC-POMDP approaches because the settings are eAumber of samples goes to infinity.
tirely different: we assume full observability in these exp In the experiments, we observed that the agent’s behavior
ments and that offline computation of policies is not feasibl changed when it interacted with different teammates. @bnsi
Cooperative Box Pushing represents domains where miser, for example, the cooperative Box-Pushing domain. Given
coordination is very costly (e.g. collision with other agen an irrational teammate, the agent spends more time pushing
or pushing a large box individually). To succeed, the agenthe small box alone, while given an MMDP teammate, the
t must adjust its policy to avoid penalties from unexpectedagent tends to push the large box together with its teammate
teammates’ actions. As shown in Table 1, OPAT outperformsather than pushing a small box.
MMDP and gets positive rewards in both ad hoc teams. Meet-
ing in 3x3 Grid represents problems with multiple ways of 5 Conclusion
coordination (e.g. meeting in any grid location). OPAT agai
performs quite well. The results for the partial sensingrtea We presented OPAT—a novel online planning algorithm for
(UTM-2) in Multi-Channel Broadcast show a limitation of ad hoc agent teams. It is designed for situations where a-
OPAT to be addressed in the future: it has no explicit model ofjents must collaborate without pre-coordination and team-
the teammates’ sensing capabilities as it directly mapsatea mates may not be fully known. We empirically tested OPAT
mates’ actions to states. Another reason is that in this dgma in various ad hoc teams with different types of teammates:
only one node can broadcast at a time; the goal is to minimizé@rational, rational but partially observable, and fullgtio-
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