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Abstract
We propose a novel baseline regret minimization
algorithm for multi-agent planning problems mo-
deled as finite-horizon decentralized POMDPs. It
guarantees to produce a policy that is provably at le-
ast as good as a given baseline policy. We also pro-
pose an iterative belief generation algorithm to effi-
ciently minimize the baseline regret, which only re-
quires necessary iterations so as to converge to the
policy with minimum baseline regret. Experimen-
tal results on common benchmark problems con-
firm the benefits of the algorithm compared with
the state-of-the-art approaches.

1 Introduction
Multi-agent planning under uncertainty is an active research
area of AI. Decentralized POMDP (DEC-POMDP) is a na-
tural extension of Markov decision process (MDP) and its
partially observable counterpart (i.e., POMDP) to coopera-
tive multi-agent settings. Although the DEC-POMDP frame-
work is very expressive and useful for modeling many real-
world applications, solving it optimally is NEXP-hard [Bern-
stein et al., 2002] and even finding near-optimal solution is
very challenging [Rabinovich et al., 2003]. Therefore, op-
timal algorithms [Hansen et al., 2004; Szer et al., 2005;
Aras and Dutech, 2010; Oliehoek et al., 2013; Dibangoye
et al., 2016] can only solve small problems and approxi-
mate methods [Pajarinen and Peltonen, 2011; Wu et al., 2011;
Amato et al., 2014; Kumar et al., 2016] usually offer no the-
oretical guarantees on the quality of the obtained policies.

Since deploying new solutions in real-world settings such
as business product deployment or healthcare delivery may be
costly or unsafe, people are often unwilling to try them unless
some performance guarantees can be provided. A tight error
bound compared to the optimal solution is desirable, but may
be difficult to compute because the optimal solution is often
unknown. Alternatively, it is useful to produce policies that
are guaranteed to outperform some baseline policies (e.g., the
policies that are currently in use). Furthermore, for the sake
of system stability, it is sometimes desirable to incrementally
improve some aspects of the current policies that have been
identified to be of low quality, instead of deploying comple-
tely new policies. While initial studies of such considerations

of real-world deployments have been conducted recently with
respect to MDPs [Petrik et al., 2016], they have not been fully
explored, particularly in the more complex setting defined by
a DEC-POMDP.

Against this background, we propose a novel algorithm for
multi-agent planning with baseline regret minimization. We
focus on finite-horizon DEC-POMDP problems and assume
that some baseline policies are given as input, either genera-
ted by an existing planner or created by experts in advance. In
our approach, we define the baseline regret as the worst-case
loss in expected value by adopting the given policies instead
of the baseline policies. Then, we generate new policies with
no regret relative to the baseline policies by minimizing the
baseline regret. By doing so, we guarantee to produce poli-
cies that are provably better than or at least equivalent to the
baseline policies in solution quality. As aforementioned, this
is crucial for deployed real-world applications.

Due to the large policy and belief space, minimizing the
baseline regret (worst-case loss) for DEC-POMDPs is com-
putationally challenging. To address this, we propose an ef-
fective and efficient technique with iterative belief genera-
tion. Specifically, our algorithm repeatedly solve the primary
and secondary optimization problems until it converges to the
policies with minimum baseline regret. In this context, the
primary optimization problem generates a policy that mini-
mizes the baseline regret given a set of beliefs, while the se-
condary optimization problem tries to expand the belief set
with a new belief point that maximizes the baseline regret
of the current policies. Empirically, we tested our algorithm
on several common DEC-POMDP benchmark problems and
compared its results with the state-of-the-art solvers.

This paper advances the state-of-the-art by making the fol-
lowing two key contributions:

• We define the baseline regret in Section 3 as a novel so-
lution criteria for solving finite-horizon DEC-POMDPs
and establish a connection between regret minimization
and policy optimization. In particular, we theoretically
prove that a policy with minimum baseline regret gua-
rantees to be not worse than the baseline policy.

• We propose an effective and efficient method based on
iterative belief generation in Section 4 for finding poli-
cies with minimum baseline regret. We prove that our
algorithm will converge to the policies with minimum
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baseline regret and only requires necessary iterations to
converge. We show that it can be used to improve parts
of the polices as needed, or be systematically integrated
with dynamic programming to improve entire policies.

In sum, we present a novel approach for finite-horizon
DEC-POMDPs with theoretical guarantees. In the experi-
ments, we empirically evaluate our approach on common
benchmark problems to confirm its advantages.

2 Background
This section briefly reviews the finite-horizon DEC-POMDP
model and its solutions based on dynamic programming.

2.1 Decentralized POMDPs
A finite-horizon decentralized POMDP (DEC-POMDP) is
defined as tuple 〈I, S, b0, {Ai}, P, {Ωi}, O,R, T 〉, where:
• I is a set of n agents.
• S is a finite set of states.
• b0 ∈ ∆(S) is the initial state distribution.
• Ai is a finite set of actions for each agent i ∈ I and
A = ×i∈IAi is the set of joint actions.
• P : S ×A× S → [0, 1] is the transition function where
P (s′|s, a) is the probability of transiting to next state s′

when taking joint action a in state s.
• Ωi is a finite set of observations for each agent i ∈ I and

Ω = ×i∈IΩi is the set of joint observations.
• O : S×A×Ω→ [0, 1] is the observation function where
O(o|a, s′) is the probability of observing joint observa-
tion o after taking joint action o with outcome state s′.
• R : S × A→ < is the reward function where R(s, a) is

the reward after taking joint action a in state s.
• T is the horizon.
A local policy qi : Ω̄i → Ai of agent i ∈ I is a mapping

from its local observation histories Ω̄i = (o1
i , o

2
i , · · · , oti) to

its actions Ai and a joint policy is a collection of local policies
q = 〈q1, q2, · · · , qn〉, one for each agent. A joint policy q is
evaluated based on the value function computed recursively:

V (s, q) = R(s, aq) +
∑

s′∈S,o∈Ω

P (s′|s, aq)O(o|aq, s′)V (s′, qo)

where aq is the joint action specified by q and qo is the joint
sub-policy of q after receiving joint observation o.

The goal of solving a DEC-POMDP is to find a joint policy
q∗ that maximizes the expected value given the initial state
distribution b0: q∗ = argmaxq

∑
s∈S b0(s)V (s, q). Note that

the planning for a DEC-POMDP can be done centrally while
the policies must be executed in a decentralized manner.

2.2 Dynamic Programming for DEC-POMDPs
For finite-horizon DEC-POMDPs, a local policy is usually re-
presented as a policy tree. One of the techniques to generate
policy trees is based on dynamic programming [Hansen et al.,
2004]. It starts from the leaf nodes of the policy tree and itera-
tively build the trees based on the one-step backup operation

until the complete policies are constructed. Although the op-
timal policy trees can be constructed, the standard dynamic
programming runs out memory very quickly even for small
toy problems.

Memory-bounded dynamic programming (MBDP) is an
approximate algorithm that can solve DEC-POMDPs with
long horizon [Seuken and Zilberstein, 2007]. Instead of
keeping all the policy tree at each iteration, it selects a
fixed number of candidate trees (with parameter maxTree)
identified by heuristics portfolio after the backup operation.
MBDP-based successors have been proposed for large pro-
blems with good empirical performance [Amato et al., 2009;
Kumar and Zilberstein, 2010; Wu et al., 2010a; Wu et al.,
2010b; Wu et al., 2010c; Wu et al., 2012]. However, they
usually offer no theoretically guarantees on solution quality.

3 Baseline Regret Minimization
In this paper, we assume that a joint baseline policy for the
DEC-POMDP has been generated either manually by dom-
ain experts or other algorithms. This joint baseline policy
is represented as a collection of policy trees. The input of
our algorithm is a local baseline policy q◦i of agent i and the
outcome is a new policy qi that guarantees to be not worse
(possibly better) than the baseline policy. During the process,
we assume that the policies of the other agents are fixed and
only the given baseline policy of agent i is improved.

In DEC-POMDPs, a distribution over the underlying world
state is not a sufficient statistic [Oliehoek, 2013] for the
decision-making agents. Instead, we consider multi-agent be-
lief state [Nair et al., 2003] as a distribution over the states
and the policies of the other agents, i.e., b ∈ ∆(S × Q−i),
where bs,q−i is the probability at state s ∈ S and the other
agents following policies q−i ∈ Q−i. Then, given such a be-
lief state b, the expected value of agent i’s policy qi can be
computed based on the value function as:

V (b, qi) =
∑
s,q−i

bs,q−i
[R(s, a) +

∑
s′,o

Pr(s′, o|s, a)V (s′, q′)]

where a is the joint action selected by joint policy q =
(qi, q−i), q′ is the next joint policy of q after observing o,
and Pr(s′, o|s, a) = P (s′|s, a)O(o|a, s′) is the short hand of
the transition and observation probabilities.

Let R(b, qi) be the regret of agent i adopting policy qi
instead of the optimal policy q∗i at belief state b defined as:

R(b, qi) = V (b, q∗i )− V (b, qi). (1)

Let B be a subset of the overall belief space. We define the
worst-case regret (loss) of policy qi in the belief region B as:
R(qi) = maxb∈BR(b, qi). Then the optimal policy q∗i in B
can be computed as: q∗i = argminqi∈Qi

R(qi) where Qi is
the overall policy space. Note that the optimal policy q∗i is
also a no-regret policy becauseR(q∗i ) = 0.

Here, we make a connection between regret minimization
and policy optimization. We show that finding the no-regret
policy is equivalent to computing the optimal policy. The-
refore, it is as hard as solving the entire problem optimally.
Instead of finding the optimal policy, our goal is to generate
a policy that is not worse than the baseline policy. In other
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words, we try to compute a policy qi that has less or equal
regret than the baseline policy.
Definition 1. The baseline regret of policy qi is the maximum
loss in expected values by adopting policy qi instead of the
baseline policy q◦i in the belief region B:

R◦(qi) = max
b∈B

[V (b, q◦i )− V (b, qi)] (2)

Theorem 1. A policy with minimum baseline regret has a
value that is not worse than the one of the baseline policy for
any belief state in the belief region.

Proof. Let qi = argminq′i
R◦(q′i) be the policy with mini-

mum baseline regret. we haveR◦(qi) ≤ 0 because:

R◦(qi) = min
q′i

R◦(q′i) ≤ R◦(q◦i ) = 0.

For any belief state b ∈ B in the region B, we have:

V (b, q◦i )− V (b, qi) ≤ max
b′∈B

[V (b′, q◦i )− V (b′, qi)]

= R◦(qi) ≤ 0.

Thus, we conclude with: ∀b∈B , V (b, q◦i ) ≤ V (b, qi).

Now, our goal is to compute a new policy qi that minimizes
the baseline regretR◦(qi) as follow:

qi = argmin
q′i

max
b∈B

[V (b, q◦i )− V (b, q′i)] (3)

Here, the key challenge is how to determine the belief region
B for the baseline regret minimization. Next, we propose an
iterative approach to address this challenge.

4 Iterative Belief Generation
Recall that we want to compute a policy qi for agent i that
minimizes the regret given the baseline policy q◦i . This can
be formulated as the following optimization problem:

minqi z
s.t. ∀b∈B V (b, q◦i )− V (b, qi) ≤ z ≤ 0

(4)

Note that this optimization problem is always feasible be-
cause q◦i is a solution if no other policy is better than q◦i .

As aforementioned, the key challenge of this optimization
problem is to determine B. Our basic idea is to start with an
initial (possibly small) set B and then grow it iteratively. Spe-
cifically, we solve two optimization problems: In the primary
optimization problem, we compute a new policy given B; In
the secondary optimization problem, we identify a new belief
state and add it to B. We iteratively solve the primary and
secondary optimization problems until convergence.

In the secondary optimization problem, we want to find a
belief state b in some region that maximizes the regret of the
current policy qi as follow:

b = argmax
b′

[V (b′, q◦i )− V (b′, qi)] s.t. b ∈ B (5)

Recall that our goal is to find a policy that is not worse than
the baseline policy. Hence, we constrain the belief state in
a belief region B where the baseline policy achieves the best

Algorithm 1: Iterative Belief Generation
1 function IBG(q◦i )
2 B ← initialize()
3 repeat
4 qi ← optimizePrimary(q◦i , B)
5 b← optimizeSecondary(qi, q

◦
i , B)

6 if b = ∅ or b ∈ B then
7 break # converged

8 B ← B ∪ {b}
9 until timeout()

10 return qi

value compared with the other policies in the baseline policy
set Q◦i . In more detail, we define the belief region as follow:

B = {b|∀q′i∈Q◦i , V (b, q◦i ) ≥ V (b, q′i)} (6)

Now, we can identify a new belief state and formulate the
secondary optimization problem as follow:

maxb z
s.t. V (b, q◦i )− V (b, qi) ≥ z ≥ 0

∀q′i∈Q◦i , V (b, q◦i ) ≥ V (b, q′i)
(7)

In more detail, the secondary optimization problem only
considers the belief region B where the baseline policy q◦i is
the best. In this region, we find a new belief b in which the
policy qi has the maximum regret.

The overall process is outlined in Algorithm 1. It starts
with a baseline policy and an initial set of belief states. Then
it interleaves solving the primary and secondary optimization
problems until the secondary optimization problem has no so-
lution or the solution is already in the belief set. In both cases,
the algorithm converges and returns the improved policy.
Theorem 2. The iterative belief generation algorithm always
converges to a policy with minimum baseline regret.

Proof. Suppose that the algorithm converges to policy qi with
positive baseline regret, i.e.,R◦(qi) > 0. By the definition of
the baseline regret, there exists a belief state b 6∈ B such that:

R◦(qi) = V (b, q◦i )− V (b, qi) > 0

If b is in the target belief region, i.e., b ∈ B, then it will be ge-
nerated by the secondary optimization problem in Equation 7.
This is contradictory to the fact that the algorithm converged.
If the belief set B is complete, then the primary optimiza-
tion procedure guarantees to generate a policy with minimum
baseline regret. Thus, we conclude that the iterative belief
generation algorithm will always converge to a policy with
minimum baseline regret.

Definition 2. A belief state b is non-dominated by the other
belief states if there exists a policy in which b has larger ba-
seline regret than the other belief states as follow:

∃qi, ∀b′, V (b, q◦i )− V (b, qi) > V (b′, q◦i )− V (b′, qi) (8)

Lemma 1. For any given policy, the corresponding non-
dominated belief state is necessary and sufficient to determine
the baseline regret of the policy.
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Proof. This can be proved by the definition of the baseline
regret for any given policy qi:

R◦(qi) = max
b∈B

[V (b, q◦i )− V (b, qi)]

If b is the corresponding non-dominated belief state of policy
qi but b 6∈ B, then the regret between the baseline policy and
qi is not maximized because by definition:

V (b, q◦)− V (b, qi) > max
b′∈B

[V (b′, q◦i )− V (b′, qi)]

Thus, b is necessary to determine the baseline regret of qi.
If b′ is a dominated belief state of policy qi, but b′ ∈ B,

then it can be safely removed from B because there exists a
non-dominated belief state b ∈ B such that:

V (b′, q◦i )− V (b′, qi) < V (b, q◦i )− V (b, qi) = R◦(qi)

Thus, b is sufficient to determine the baseline regret of qi.

Lemma 2. All the belief states generated by the secondary
optimization process are non-dominated belief states.

Proof. For any belief state b generated by the secondary op-
timization process, we have a policy qi such that:

V (b, q◦i )− V (b, qi) = max
b′∈B

[V (b′, q◦i )− V (b′, qi)]

> V (b′, q◦i )− V (b′, qi), ∀b′ ∈ B\b

Thus, b is a non-dominated belief state for policy qi.

Lemma 3. All the necessary non-dominated belief states will
be generated by the secondary optimization.

Proof. Suppose that a belief state b ∈ B is non-dominated
for policy qi, but not generated by the secondary optimiza-
tion, i.e., b 6∈ B. If ∀b′ ∈ B, qi has the minimum baseline
regret, then qi will be generated by the primary optimization.
After that, b will be generated by the secondary optimization.
If ∀b′ ∈ B, qi does not have the minimum baseline regret,
then qi is not the target policy with overall minimum baseline
regret. Thus, it is not necessary to consider b.

Theorem 3. The iterative belief generation algorithm requi-
res only iterations that are necessary for convergence.

Proof. According to Lemma 3, all the necessary non-
dominated belief states will be generated by the secondary
optimization. Suppose that an unnecessary belief state b ∈ B
is also generated by the secondary optimization. According to
Lemma 2, b is a non-dominated belief state. Let qi be the cor-
responding policy for b. According to Lemma 1, the baseline
regret of qi cannot be correctly computed without b. There-
fore, b is also necessary for the algorithm. Thus, the algorithm
requires only iterations necessary for convergence.

Note that the size of non-dominated belief states is often
much less than the overall belief space, i.e., |B| � |B|. The-
refore, it is effective and efficient by considering only non-
dominated beliefs that are necessary for convergence.

In the following sections, we describe how the primary and
secondary optimization problems can be solved in details.

4.1 Primary Optimization for Policy Improvement
In the primary optimization procedure, we try to improve
the current policy qi by solving the optimization problem as
shown in Equation 4. Note that we represent an agent’s local
policy as a policy tree where each tree node is associated with
an action and branches, one for each observation.

In finite-horizon DEC-POMDPs, the number of possible
trees grows doubly exponentially with the horizon. It is usu-
ally computational intractable to search over the entire policy
space with full horizon. Therefore, in our primary optimiza-
tion, we perform one-step improvement for the current policy.
Specifically, we represent policy qi as x, y-variables where:
• ∀ai∈Ai

, xai
∈ {0, 1} is a binary variable where xai

= 1
if action ai is taken by the root node of the policy tree
and 0 otherwise. Since in deterministic policy trees each
node can have only an action, we have the constraint for
a valid policy as:

∑
ai∈Ai

xai
= 1.

• ∀ai∈Ai,oi∈Ωi,q′i∈Q′i , yai,oi,q′i
∈ {0, 1} is also a binary va-

riable where yai,oi,q′i
= 1 if action ai is taken by the root

node and sub-policy q′i is associated with the branch oi,
and 0 otherwise. Since each observation branch can have
ony a sub-policy, we have the constraint for a valid po-
licy as: ∀ai∈Ai,oi∈Ωi

∑
q′i∈Q′i

yai,oi,q′i
= xai

.

Given the x, y-variables for the new policy and z as its re-
gret, we realize the optimization problem in Equation 4 with
the following mixed integer linear programming (MILP):

min
x,y

z

s.t. ∀b∈B , V (b, q◦i )−
∑

s,q−i

bs,q−i [
∑
ai

xaiR(s, a)+∑
s′,o

∑
ai,q′i

yai,oi,q′i
Pr(s′, o|s, a)V (s′, q′)] ≤ z ≤ 0∑

ai
xai = 1; ∀ai,oi ,

∑
q′i
yai,oi,q′i

= xai

∀ai
, xai

∈ {0, 1}; ∀ai,oi,q′i
, yai,oi,q′i

∈ {0, 1}.
For each belief state b, we have the following short-hands:

Rb,ai =
∑
s,q−i

bs,q−iR(s, a) (9)

where the joint action a = (ai, a−i) with a−i selected by q−i.

Vb,ai,oi,q′i
=

∑
s,q−i

bs,q−i

∑
s′,o−i

Pr(s′, o|s, a)V (s′, q′) (10)

where the joint sub-policy q′ = (q′i, q
′
−i) with q′−i selected by

q−i given observation o−i.
Now, we can simplify the aforementioned MILP as follow:
min
x,y

z

s.t. ∀b∈B , V (b, q◦i )− [
∑
ai

xaiRb,ai+∑
ai,oi,q′i

yai,oi,q′i
Vb,ai,oi,q′i

] ≤ z ≤ 0 (a)∑
ai
xai = 1; ∀ai,oi ,

∑
q′i
yai,oi,q′i

= xai (b)

∀ai , xai ∈ {0, 1}; ∀ai,oi,q′i
, yai,oi,q′i

∈ {0, 1} (c)

where constraint (a) guarantees that the regret for the new
policy is minimized and no more than the baseline, and con-
straints (b) and (c) ensure that the variables for the new policy
are valid. Therefore, this MILP has (|Ai|+ |Ai||Ωi||Q′i|+ 1)
variables and (|B|+ |Ai||Ωi|+ 2) constraints.
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Algorithm 2: Dynamic Programming with IBG
1 function IBG-DP(q◦)
2 for t = 1 to T do # policy initialization
3 Qt

i ← initialize(q◦i ), ∀i ∈ I
4 V (qt)← evaluate(qt), ∀qt ∈ Qt

5 for t = T to 1 do # policy improvement
6 repeat
7 foreach i ∈ I and qti ∈ Qt

i do
8 qti ← IBG(qti)

9 until timeout()
10 V (qt)← evaluate(qt), ∀qt ∈ Qt

11 return q◦ # the improved joint policy

4.2 Secondary Optimization for Belief Generation
In the secondary optimization problem, we aim at finding a
new belief state by solving the optimization problem shown
in Equation 7. Recall that a belief state is a probability dis-
tribution over the states and the other agents’ policies. The-
refore, it must satisfy the probability constraints as follow:
∀s,q−i

, xs,q−i
≥ 0 and

∑
s,q−i

xs,q−i
= 1.

As discussed above, we expect the worse-case belief state
for the current policy q−i. In other words, we want to com-
pute the belief state that has the maximum regret for q−i. By
considering such belief state, we are able to gain the maxi-
mum improvement on the current policy. Besides, we only
consider the belief region where the baseline policy has the
best value. This is important because our goal is to find a
policy that is not worse than the baseline policy. Therefore,
the belief region beyond the scope of the currently considered
baseline policy should be excluded.

Now, we realize the secondary optimization problem in
Equation 7 with the following linear program (LP):

max
x

z

s.t.
∑

s,q−i

xs,q−i
[V (s, q◦)− V (s, q)] ≥ z ≥ 0 (a)

∀q′i∈Q◦i ,
∑

s,q−i

xs,q−i
[V (s, q◦)− V (s, q′)] ≥ 0 (b)∑

s,q−i
xs,q−i

= 1; ∀s,q−i
, xs,q−i

≥ 0 (c)

where the joint policies q = (qi, q−i), q◦ = (q◦i , q−i), and
q′ = (q′i, q−i). This LP has (|S||Q−i| + 1) variables and
(|Q◦i |+ |S||Q−i|+ 3) constraints.

4.3 Integrating with Dynamic Programming
Generally, we can randomly choose a node in the policy tree
representing the baseline policy and improve it using our met-
hod. Note that due to the huge policy space, we propose
a more practical technique to perform only one-step impro-
vement for the given node. Therefore, a more systematic way
to improve the whole baseline policy is to integrate our met-
hod with dynamic programming. The main procedures of our
dynamic programming algorithm are outlined in Algorithm 2.

Theorem 4. The proposed algorithm has linear time com-
plexity with respect to the horizon.
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Figure 1: Results of IBG-DP vs. Optimal solution.

Note that the output of iterative belief generation in Algo-
rithm 2 is a new policy that replaces the baseline policy. In
other words, the total number of policy trees does not grow
with the iteration steps. Thus, the proposed algorithm share
the same linear time complexity w.r.t. the horizon with the
common MBDP-based approximate algorithms.

5 Experiments
We empirically evaluated our algorithm on four common ben-
chmark problems1 widely used in the DEC-POMDP litera-
ture: Broadcast Channel, Recycling Robots, Cooperative Box
Pushing, and Meeting in a 3×3 Grid. We ran our algorithm
on each problem instance multiple times until the results were
statistically meaningful and reported the average policy va-
lues. Our algorithm (i.e., IBG-DP) was implemented in Java
1.8 and ran on a machine with 3.5GHz Intel Core i7 CPU
and 8GB of RAM. The MILP and LP were solved by IBM
CPLEX 12.61. We conducted two sets of experiments to il-
lustrate the performance of our algorithm.

In the first set of our experiments, we compared our re-
sults with the optimal values obtained by existing optimal al-
gorithms2 for DEC-POMDPs. The baseline policies that we
used here are random policy trees with maxTree = 3. Our
goal is to show that IBG-DP is able to get near-optimal va-
lues by minimizing the baseline regret starting with random
policies. Figure 1 summarizes our results. As shown in Fi-
gure 1a, IBG-DP obtained the optimal values for the Broad-
cast Channel problem with different horizons. In Figure 1b,
we see that IBG-DP achieved near-optimal values for the Re-
cycling Robots domain. Specifically, the bound w.r.t. the op-
timal value is tight for the instances with short horizon and
becomes loose as the horizon increases. This is because we
fixed the number of subtrees in the baseline policies to be
three (i.e., maxTree = 3). IBG-DP does not increase the
number of subtrees for scalability consideration when it im-
proves the baseline policies at each iteration. This may be
sufficient for some problems (e.g., Broadcast Channel) but
may significantly reduce the value for some other domains
(e.g., Recycling Robots). Nevertheless, IBG-DP still achie-
ved competitive values (e.g., 80% optimal at T = 100).

1
http://masplan.org/problem_domains

2
http://masplan.org/optimal_values

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

448



 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 10 20 30 40 50 60 70 80 90 100

V
al

u
e

Horizon

IBG-DP
PBIP-IPG

(a) Cooperative Box Pushing

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10  20  30  40  50  60  70  80  90 100

V
al

u
e

Horizon

IBG-DP
PBIP-IPG

(b) Meeting in 3×3 Grid

Figure 2: Results of IBG-DP vs. PBIP-IPG.

In the second set of experiments, we compared our al-
gorithm with a leading approximate algorithm for finite-
horizon DEC-POMDPs. Specifically, we compared with
PBIP-IPG [Amato et al., 2009] that consistently outperforms
other algorithms such as MBDP, IMBDP, MBDP-OC and
PBIP. TBDP and DecRSPI are faster than PBIP-IPG but have
similar values for the tested domains. Our goal is to show that
IBG-DP scales well for large problems as existing approx-
imate algorithms and can get similar or often better values.
Figure 2 summarizes our results. In Figure 2a, we show that
IBG-DP improved the baseline policies with large margin for
the Cooperative Box Pushing problem. This problem is consi-
derably harder than the aforementioned two problems. IBG-
DP can further improve the baseline policies by minimizing
the baseline regret. For the Meeting in a 3×3 Grid problem as
depicted in Figure 2b, IBG-DP achieved similar values to the
policies computed by PBIP-IPG. This may be because the po-
licies obtained by PBIP-IPG have already been the best ones
for maxTree = 3.

Table 1: Runtime Results for Broadcast Channel

Horizon 5 10 30 50 100

IBG-DP 1.47s 1.72s 3.39s 5.09s 10.14s
FB-HSVI 0.33s 0.78s 14.0s 41.7s 473.3s

Generally, IBG-DP takes more time than MBDP based al-
gorithms because it has to optimize the policies w.r.t. a set of
beliefs instead of a single one. Table 1 illustrates our runtime
results for the Broadcast Channel problem comparing to FB-
HSVI [Dibangoye et al., 2016] – a leading optimal algorithm.
For instances with short horizons (e.g., 5, 10), IBG-DP took
more time than FB-HSVI because it must call the external
CPLEX solver with JNI multiple times. As expected, IBG-
DP outperformed FB-HSVI in runtime for instances with
long horizons (e.g., 30, 50, 100) because IBG-DP has linear
time complexity w.r.t. the horizon as with MBDP-based al-
gorithms. In practice, it can be used as an anytime algorithm,
which may be stopped before convergence with the risk of vi-
olating the guarantees. This is still useful as the policies have
been optimized over a set of belief states.

6 Related Work
Regret minimization is an online learning technique origi-
nally used for the multi-armed bandit (MAB) problem. It has
been broadly used to solve complex games with incomplete
information [Zinkevich et al., 2007; Wu and Jennings, 2014].
In the context of decision-theoretic planning, several appro-
aches [Xu and Mannor, 2009; Regan and Boutilier, 2010;
Ahmed et al., 2013; Petrik et al., 2016] have been proposed
to find robust solutions for uncertain MDPs with the max-
min/minmax regret criteria in order to provide some guaran-
tees on the worst-case performance. Among them, Regan and
Boutilier [2010] use an iterative constraint generation appro-
ach to solve large LP. Similar to ours, Petrik et al. [2016]
proposed a safe policy improvement method by minimizing
robust baseline regret for MDPs. By contrast, our algorithm is
designed to solve DEC-POMDPs, requiring substantially dif-
ferent solution and analysis techniques. Recently, Banerjee
and Kraemer [2013] proposed a decentralized planning ap-
proach based on counterfactual regret minimization for DEC-
POMDPs. They represent the DEC-POMDP as a strategic
game and run regret decomposition in the tree in order to mi-
nimize the overall regret. In contrast, we try to find policies
with minimum baseline regret w.r.t. the given baseline.

7 Conclusion
We proposed a novel approach for solving finite-horizon
DEC-POMDPs, where the baseline regret of a policy is in-
troduced as a new solution criterion. We show that a po-
licy with minimum baseline regret guarantees to be not worse
than the baseline policy. Due to the large policy space of
DEC-POMDPs, minimizing the baseline regret is computa-
tional challenging. To address this, we proposed the IBG
algorithm with the procedures for iteratively improving the
baseline policy and finding the non-dominated beliefs. We
proved that IBG will eventually converge to a policy with
minimum baseline regret with only necessary iterations. We
also presented an implementation of IBG based on MILP and
LP, which can be systematically integrated with dynamic pro-
gramming to improve the entire policies (namely IBG-DP).
Our experiments on four common DEC-POMDPs benchmark
problems show that IBG-DP obtained near-optimal policies
(e.g., Broadcast Channel) or made significant improvement
(e.g., Cooperative Box Pushing) compared to the state-of-
the-art. In future work, we will further explore the baseline
regret minimization technique for DEC-POMDPs in model-
free settings, building on our earlier work [Wu et al., 2010b;
Wu et al., 2013] where the baseline solution may be encoded
in the form of a hand-crafted controller.
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