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Abstract

We present decentralized rollout sampling policy
iteration (DecRSPI)–a new algorithm for multi-
agent decision problems formalized as DEC-
POMDPs. DecRSPI is designed to improve scal-
ability and tackle problems that lack an explicit
model. The algorithm uses Monte-Carlo meth-
ods to generate a sample of reachable belief
states. Then it computes a joint policy for each
belief state based on the rollout estimations. A
new policy representation allows us to represent
solutions compactly. The key benefits of the al-
gorithm are its linear time complexity over the
number of agents, its bounded memory usage and
good solution quality. It can solve larger prob-
lems that are intractable for existing planning al-
gorithms. Experimental results confirm the ef-
fectiveness and scalability of the approach.

1 Introduction

Planning under uncertainty in multi-agent settings is a chal-
lenging computational problem, particularly when agents
with imperfect sensors and actuators, such as autonomous
rovers or rescue robots, must reason about a large space of
possible outcomes and choose a plan based on their incom-
plete knowledge. The partially observable Markov deci-
sion process (POMDP) has proved useful in modeling and
analyzing this type of uncertainty in single-agent domains.
When multiple cooperative agents are present, each agent
must also reason about the decisions of the other agents and
how they may affect the environment. Since each agent can
only obtain partial information about the environment and
sharing all the local information among the agents is often
impossible, each agent must act based solely on its local
information. These problems can be modeled as decentral-
ized POMDPs (DEC-POMDPs) [2].

When a complete model of the domain is available, DEC-
POMDPs can be solved using a wide range of optimal or

approximate algorithms, particularly MBDP [18] and its
descendants [1, 8, 17]. Unfortunately, these algorithms are
quite limited in terms of the size of the problems they can
tackle. This is not surprising given that finite-horizon DEC-
POMDPs are NEXP-complete [2]. Intuitively, the main
reason is that it is hard to define a compact belief state and
compute a value function for DEC-POMDPs, as is often
done for POMDPs. The state and action spaces blow-up
exponentially with the number of agents. Besides, it is very
difficult to search over the large policy space and find the
best action for every possible situation.

Another key challenge is modeling the dynamics of the en-
tire domain, which may include complex physical systems.
Existing DEC-POMDP algorithms assume that a complete
model of the domain is known. This assumption does not
hold in some real-world applications such as robot soccer.
Incomplete domain knowledge is often addressed by rein-
forcement learning algorithms [19]. However, most coop-
erative multi-agent reinforcement learning algorithms as-
sume that the system state is completely observable by all
the agents [6]. Learning cooperative policies for multi-
agent partially-observable domains is extremely challeng-
ing due to the large space of possible policies given only
the local view of each agent.

In reinforcement learning, a class of useful techniques such
as Monte-Carlo methods allows agents to choose actions
based on experience [19]. These methods require no prior
knowledge of the dynamics, as long as sample trajectories
can be generated online or using a simulator of the environ-
ment. Although a model is required, it must only provide
enough information to generate samples, not the complete
probability distributions of all possible transitions that are
required by planning algorithms. In many cases it is easy
to generate samples by simulating the target environment,
but obtaining distributions in explicit form may be much
harder. In the robot soccer domain, for example, there exist
many high-fidelity simulation engines. It is also possible to
put a central camera on top of the field and obtain samples
by running the actual robots.

This paper introduces the decentralized rollout sampling
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policy iteration (DecRSPI) algorithm for finite-horizon
DEC-POMDPs. Our objective is to compute a set of coop-
erative policies using Monte-Carlo methods, without hav-
ing an explicit representation of the dynamics of the un-
derlying system. DecRSPI first samples a set of reach-
able belief states based on some heuristic policies. Then
it computes a joint policy for each belief state based on the
rollout estimations. Similar to dynamic programming ap-
proaches, policies are constructed from the last step back-
wards. A new policy representation is used to bound the
amount of memory. To the best of our knowledge, this is
the first rollout-based learning algorithm for finite-horizon
DEC-POMDPs. DecRSPI has linear time complexity over
the number of agents and it can solve much larger problems
compared to existing planning algorithms.

We begin with some background on the DEC-POMDP
model and the policy structure we use. We then describe
each component of the rollout sampling algorithm and an-
alyze its properties. Finally, we examine the performance
of DecRSPI on a set of test problems, and conclude with a
summary of related work and the contributions.

2 Decentralized POMDPs

Formally, a finite-horizon DEC-POMDP can be defined as
a tuple 〈I, S, {Ai}, {Ωi}, P, O, R, b0, T 〉, where

• I is a collection of agents, identified by i ∈ {1 . . .m},
and T is the time horizon of the problem.

• S is a finite state space and b0 is the initial belief state
(i.e., a probability distribution over states).

• Ai is a discrete action space for agent i. We denote
by ~a = 〈a1, a2, · · · , am〉 a joint action where ai ∈ Ai

and ~A = ×i∈IAi is the joint action space.
• Ωi is a discrete observation space for agent i. Sim-

ilarly ~o = 〈o1, o2, · · · , om〉 is a joint observation
where oi ∈ Ωi and ~Ω = ×i∈IΩi is the joint obser-
vation space.

• P : S× ~A → ∆(S) is the state transition function and
P (s′|s,~a) denotes the probability of the next state s′

when the agents take joint action ~a in state s.
• O : S × ~A → ∆(~Ω) is an observation function and

O(~o|s′,~a) denotes the probability of observing ~o after
taking joint action ~a with outcome state s′.

• R : S × ~A → R is a reward function and R(s,~a) is
the immediate reward after agents take ~a in state s.

In a DEC-POMDP, each agent i ∈ I executes an action ai

based on its policy at each time step t. Thus a joint action ~a
of all the agents is performed, followed by a state transition
of the environment and an identical joint reward obtained
by the team. Then agent i receives its private observation oi

from the environment and updates its policy for the next ex-
ecution cycle. The goal of each agent is to choose a policy

that maximizes the accumulated reward of the team over
the horizon T , i.e.

∑T
t=1 E[R(t)|b0].

Generally, a policy qi is a mapping from agent i’s ob-
servation history to an action ai and a joint policy ~q =
〈q1, q2, · · · , qm〉 is a vector of policies, one for each agent.
The value of a fixed joint policy ~q at state s can be com-
puted recursively by the Bellman equation:

V (s, ~q) = R(s,~a) +
∑
s′,~o

P (s′|s,~a)O(~o|s′,~a)V (s′, ~q~o)

where ~a is the joint action specified by ~q, and ~q~o is the joint
sub-policy of ~q after observing ~o. Given a state distribution
b ∈ ∆(s), the value of a joint policy ~q can be computed by

V (b, ~q) =
∑
s∈S

b(s)V (s, ~q) (1)

Note that in a DEC-POMDP, each agent can only receive its
own local observations when executing the policy. There-
fore the policy must be completely decentralized, which
means the policy of an agent must be guided by its own
local observation history only. It is not clear how to main-
tain a sufficient statistic, such as a belief state in POMDPs,
based only on the local partial information of each agent.
Thus, most of the works on multi-agent partially observable
domains are policy-based and learning in DEC-POMDP
settings is extremely challenging. While the policy execu-
tion is decentralized, planning or learning algorithms can
operate offline and thus may be centralized [11, 18].

The policies for finite-horizon DEC-POMDPs are often
represented as a set of local policy trees [1, 8, 11, 17, 18].
Each tree is defined recursively with an action at the root
and a subtree for each observation. This continues until the
horizon is reached at a leaf node. A dynamic programming
(DP) algorithm was developed to build the policy trees op-
timally from the bottom up [11]. In this algorithm, the poli-
cies of the next iteration are enumerated by an exhaustive
backup of the current trees. That is, for each action and
each resulting observation, a branch to any of the current
trees is considered. Unfortunately, the number of possi-
ble trees grows double-exponentially over the horizon. Re-
cently, memory-bounded techniques have been introduced.
These methods keep only a fixed number of trees at each
iteration [1, 8, 17, 18]. They use a fixed amount of memory
and have linear complexity over the horizon.

There are many possibilities for constructing policies with
bounded memory. In this work we use a stochastic policy
for each agent. It is quite similar to stochastic finite state
controllers (FSC), used to solve infinite-horizon POMDPs
[16] and DEC-POMDPs [3]. But our stochastic policies
have a layered structure, one layer for each time step. Each
layer has a fixed number of decision nodes. Each node is la-
beled with an action and includes a node selection function.
The selection function is a mapping from an observation to
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Figure 1: An agent’s stochastic policy with two observa-
tions and two decision nodes in each layer.

a probability distribution over the nodes of the next layer.
In this paper, we denote by Qt

i the set of decision nodes of
agent i ∈ I at time step t ∈ 1..T . Also, N denotes the
predetermined size of Qt

i and π(q′i|oi) is the probability of
selecting the node of the next layer q′i after observing oi.

An example of such stochastic policies is shown in Fig-
ure 1. In the planning phase, a set of stochastic polices
are constructed offline, one for each agent. When execut-
ing the policy, each agent executes the action in the current
node and then transitions to the next node based on the re-
ceived observation as well as the node selection function.
We show how the stochastic node selection function can
be optimized easily by our policy improvement technique.
The following sections describe the algorithm in details.

3 The Rollout Sampling Method

In this section, we propose a new rollout sampling policy
iteration (DecRSPI) for DEC-POMDPs that heuristically
generates stochastic policies using an approximate policy
improvement operator trained with Monte-Carlo simula-
tion. The approximate operator performs policy evaluation
by simulation, evaluating a joint policy ~q at state s by draw-
ing K sample trajectories of ~q starting at s. Then, the oper-
ator performs policy improvement by constructing a series
of linear programs with parameters computed from sam-
ples and then solving the linear programs to induce a new
improved approximate policy. Similar to MBDP, DecR-
SPI generates policies using point-based dynamic program-
ming, which builds policies according to heuristic state
distributions from the bottom up. The key difference is
that DecRSPI improves the policies by simulation without
knowing the exact transition function P , observation func-
tion O and reward function R of the DEC-POMDP model.

Note that DecRSPI is performed offline in a centralized
way, but the computed policies are totally decentralized.
The use of simulation assumes that the state of the environ-
ment can be reset and the system information (state, reward
and observations) are available after executing a joint ac-
tion by the agents. In the planning phase, this information
is often available. In large real-world systems, modeling

Algorithm 1: Rollout Sampling Policy Iteration

generate a random joint policy ~Q given T, N
sample a set of beliefs B for t ∈ 1..T, n ∈ 1..N
for t=T to 1 do

for n=1 to N do
b← Bt

n, ~q ← ~Qt
n

repeat
foreach agent i ∈ I do

keep the other agents’ policies q−i fixed
foreach action ai ∈ Ai do

Φi ← estimate the parameter matrix
build a linear program with Φi

πi ← solve the linear program
∆i ← ∆i ∪ {〈ai, πi〉}

〈ai, πi〉∗←arg max∆i Rollout(b, 〈ai, πi〉)
update agent i’s policy qi by 〈ai, πi〉∗

until no improvement in all agents’ policies

return the joint policy ~Q

the exact DEC-POMDP is extremely challenging and even
the representation itself is nontrivial for several reasons.
First, the system may be based on some complex physi-
cal models and it may be difficult to compute the exact P ,
O and R. Second, the state, action and observation spaces
may be very large, making it hard to store the entire tran-
sition table. Fortunately, simulators of these domains are
often available and can be modified to compute the policies
as needed.

We activate DecRSPI by providing it with a random joint
policy and a set of reachable state distributions, computed
by some heuristics. The joint policy is initialized by assign-
ing a random action and random node selection functions
for each decision node from layer-1 to layer-T . Policy it-
eration is performed from the last step t=T backward to
the first step t=1. At each iteration, we first choose a state
distribution and an unimproved joint policy. Then we try
to improve the joint policy based on the state distribution.
This is done by keeping the policies of the other agents
fixed and searching for the best policy of one agent at a
time. We continue to alternate between the agents until no
improvement is achievable for the current policies of all the
agents. This process is summarized in Algorithm 1.

3.1 Belief Sampling

In this paper, the belief state b ∈ ∆(S) is a probability dis-
tribution over states. We use it interchangeably with the
state distribution with the same meaning. Generally, given
belief state bt at time t, we determine ~at, execute ~at and
make a subsequent observation ~o t+1, then update our be-
lief state to obtain bt+1. In single-agent POMDPs, this be-
lief state is obtained via straightforward Bayesian updating,
by computing bt+1 = Pr(S|bt, ~at, ~o t+1). Unfortunately,
even if the transition and observation functions are avail-
able, the belief update itself is generally time-consuming
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Algorithm 2: Belief Sampling
for n=1 to N do

Bt
n ← ∅ for t ∈ 1..T

h← choose a heuristic policy
for k=1 to K do

s← draw a state from b0

for t=1 to T do
θt ← θt ∪ {bt

k(s)}
~a← select a joint action based on h
s′ ← simulate the model with s,~a
s← s′

for t=1 to T do
bt ← compute the belief by particle set θt

Bt
n ← Bt

n ∪ {bt}

return the belief set B

because each belief state is a vector of size |S|. To approx-
imate belief states by simulation, consider the following
particle filtering procedure. At any time step t, we have a
collection θt of K particles. The particle set θt, t ∈ 1..T
represents the following state distribution:

bt(s) =
∑K

k=1{1 : bt
k(s) ∈ θt}

K
,∀s ∈ S (2)

where bt
k(s) is the kth particle of θt. As mentioned above,

the significance of this method lies in the fact that, for many
applications, it is easy to sample successor states according
to the system dynamics. But direct computation of beliefs
is generally intractable especially when the dynamics spec-
ification is unavailable.

Another key question is how to choose the heuristic poli-
cies. In fact, the usefulness of the heuristics and, more im-
portantly, the computed belief states, are highly dependent
on the specific problem. Instead of just using one heuris-
tic, a whole portfolio of heuristics can be used to compute
a set of belief states. Thus, each heuristic is used to select
a subset of the policies. There are a number of possible
alternatives. Our first choice is the random policy, where
agents select actions randomly from a uniform distribution
at each time step. Another choice is the policy of the under-
lying MDP. That is, agents can learn an approximate MDP
value function by some MDP learning algorithms and then
select actions greedily based on that value function. In spe-
cific domains such as robot soccer, where learning the MDP
policy is also hard, hand-coded policies or policies learned
by DecRSPI itself with merely random guidance are also
useful as heuristics. The overall belief sampling method is
detailed in Algorithm 2.

3.2 Policy Improvement

In multi-agent settings, agents with only local information
must reason about all the possible choices of the others and
select the optimal joint policy that maximizes the team’s
expected reward. One straightforward method for finding

Maximize x

∑
oi∈Ωi

∑
q′i∈Qt+1

i
Φi(oi, q

′
i)x(oi, q

′
i)

subject to ∀oi,q′i
x(oi, q

′
i) ≥ 0,∀oi

∑
q′i

x(oi, q
′
i) = 1.

Table 1: Linear program to improve agent i’s policy where
the variable x(oi, q

′
i) = π(q′i|oi) is the node selection table.

the optimal joint policy is to simply search over the entire
space of possible policies, evaluate each one, and select the
policy with the highest value. Unfortunately, the number
of possible joint policies is O((|Ai|(|Ωi|T−1)/(|Ωi|−1))|I|).
Instead of searching over the entire policy space, dynamic
programming (DP) constructs policies from the last step
up to the first one and eliminates dominated policies at the
early stages [11]. However, the exhaustive backup in the
DP algorithm at t still generates agent i’s policies of the or-
der O(|Ai||Qt−1

i ||Ωi|). Memory-bounded techniques have
been developed to combine the top-down heuristics and the
bottom-up dynamic programming together, keeping only a
bounded number of policies at each iteration [18]. This re-
sults in linear complexity over the horizon, but the one-step
backup operation is still time-consuming [17].

Our algorithm is based on the MBDP algorithm [18], but
it approximates the backup operation with an alternating
maximization process. As shown in Algorithm 1, the ba-
sic idea is to choose each agent in turn and compute the
best-response policy, while keeping the policies of the other
agents fixed. This process is repeated until no improve-
ment is possible for all agents. That is, the process ends
when the joint policy converges to a Nash equilibrium. This
method was first introduced by Nair et al. [14] and later
refined by Bernstein et al. [3]. The differences are: Nair
et al. use the method to reformulate the problem as an aug-
mented POMDP; Bernstein et al. use it to optimize the
controllers of infinite-horizon DEC-POMDPs. In contrast,
when an agent is chosen, our algorithm approximates the
best-response policy that maximizes the following value:

V (b, ~q) = R(b,~a)+
∑

s′,~o,~q ′

Pr(s′, ~o|b,~a)
∏

i

π(q′i|oi)V (s′, ~q′)

(3)
where Pr(s′, ~o|b,~a) =

∑
s∈S b(s)P (s′|s,~a)O(~o|s′,~a) and

R(b,~a) =
∑

s∈S b(s)R(s,~a). This value function is simi-
lar to Equation 1, but for a stochastic joint policy.

Notice that our algorithm is designed to work when an ex-
plicit form of system dynamics is not available. Our solu-
tion, as shown in Algorithm 1, is two-fold: first we find the
best node selection function πi for every action ai ∈ Ai

and generate a set of stochastic policies ∆i; then we evalu-
ate the policy qi ∈ ∆i for the given belief point b, choose
the best one and update the current policy of agent i with
it. In order to find the best πi that maximizes the value
function of Equation 3 given ai and other agents’ policies
q−i, we use the linear program shown in Table 1. Note that
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Algorithm 3: Parameter Estimation
Input: b, ai, q−i

a−i ← get actions from q−i

for k=1 to K do
s← draw a state from b
s′, ~o← simulate the model with s,~a
ωoi(s

′, o−i)← ωoi(s
′, o−i) + 1

normalize ωoi for ∀oi ∈ Ωi

foreach oi ∈ Ωi, q′i ∈ Qt+1
i do

for k=1 to K do
s′, o−i ← draw a sample from ωoi

q′−i ← get other agents’ policy π(·|q−i, o−i)
Φi(oi, q

′
i)k ← Rollout(s′, ~q ′)

Φi(oi, q
′
i)← 1

K

∑K
k=1 Φi(oi, q

′
i)k

return the parameter matrix Φi

R(b,~a) is a constant given b, ai, q−i and is thus omitted.
The matrix Φi of the linear program is defined as follows:

Φi(oi, q
′
i) =

∑
s′,o−i,q′−i

Pr(s′, ~o|b,~a)π(q′−i|o−i)V (s′, ~q′)

where π(q′−i|o−i) =
∏

k 6=i π(q′k|ok). Since the dynamics
is unknown, Algorithm 3 is used to estimate Φi. It first esti-
mates Pr(s′, ~o|b,~a) by drawing K samples from one-step
simulation. Then it estimates each element of Φi by an-
other K samples with π(q′−i|o−i). The value of V (s′, ~q′)
is approximated by the rollout operation as follows.

3.3 Rollout Evaluation

The rollout evaluation is a Monte-Carlo method to estimate
the value of a policy ~q at a state s (or belief state b), without
requiring an explicit representation of the value function as
the DP algorithm does. A rollout for 〈s, ~q〉 simulates a tra-
jectory starting from state s and choosing actions according
to policy ~q up to the horizon T . The observed total accu-
mulated reward is averaged over K rollouts to estimate the
value V (s, ~q). If a belief state b is given, it is straightfor-
ward to draw a state s from b and perform this simulation.
The outline of the rollout process is given in Algorithm 4.

The accuracy of the expected value estimate improves with
the number of rollouts. Intuitively, the value starting from
〈s, ~q〉 can be viewed as a random variable whose expecta-
tion is V (s, ~q). Each rollout term vk is a sample of this
random variable and the average of these Ṽ is an unbiased
estimate of V (s, ~q). Thus, we can apply the following Ho-
effding bounds to determine the accuracy of this estimate.

Property 1 (Hoeffding inequality). Let V be a random
variable in [Vmin, Vmax] with V̄ = E[V ], observed values
v1, v2, · · · , vK of V , and Ṽ = 1

K

∑K
k=1 vk. Then

Pr(Ṽ ≤ V̄ + ε) ≥ 1− exp
(
−2Kε2/V 2

∆

)
Pr(Ṽ ≥ V̄ − ε) ≥ 1− exp

(
−2Kε2/V 2

∆

)
where V∆ = Vmax − Vmin is the range of values.

Algorithm 4: Rollout Evaluation
Input: t, s, ~q t

for k=1 to K do
vk ← 0
while t ≤ T do

~a← get the joint action from ~q t

s′, r, ~o← simulate the model with s,~a
vk ← vk + r, ~q t+1 ← π(·|~q t, ~o)
s← s′, t← t + 1

Ṽ ← 1
K

∑K
k=1 vk

return the average value Ṽ

Given a particular confidence threshold δ and a size of
samples K, we can produce a PAC-style error bound ε on
the accuracy of our estimate Ṽ :

ε =

√
V 2

∆ ln ( 1
δ )

2K
(4)

Property 2. If the number of rollouts K is infinitely large,
the average value returned by the rollout algorithm Ṽ will
converge to the expected value of the policy V̄ .

The required sample size given error tolerance ε and
confidence threshold δ for the estimation of Ṽ is:

K(ε, δ) =
V 2

∆ ln ( 1
δ )

2ε2
(5)

It is difficult to compute a meaningful error bound for the
overall algorithm. There are several reasons: (1) DecR-
SPI is an MBDP-based algorithm and MBDP itself has no
guarantee on the solution quality since the belief sampling
method is based on domain-dependent heuristics; (2) the
local search technique–which updates one agent’s policy at
a time–could get stuck in a suboptimal Nash equilibrium;
and (3) the error may accumulate over the horizon, because
the policies of the current iteration depend on the policies
of previous iterations. Thus, we demonstrate the perfor-
mance and benefits of DecRSPI largely based on experi-
mental results.

3.4 Complexity Analysis

Note that the size of each agent’s policy is predetermined
with T layers and N decision nodes in each layer. At each
iteration, DecRSPI chooses an unimproved joint policy and
tries to improve the policy parameters (actions and node
selection functions) of each agent. Thus, the amount of
space is of the order O(mTN) for m agents. Several roll-
outs are performed in the main process of each iteration.
The time per rollout grows linearly with T . Therefore,
the total time with respect to the horizon is on the order
of 1 + 2 + · · ·+ T = (T 2 + T )/2, i.e. O(T 2).

Theorem 3. The DecRSPI algorithm has linear space and
quadratic time complexity with respect to the horizon T .
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Figure 2: Experimental results for standard benchmark problems.

Clearly, the amount of space grows linearly with the num-
ber of agents. At each iteration, the main loop chooses
N joint policies. For each joint policy, the improvement
process selects agents alternatively until no improvement
is possible. In practice, we set thresholds both for the
minimum improvement (e.g. 10−4) and the maximum re-
peat count (e.g. 100). The improvement process terminates
when one of these bounds is reached. Theoretically, the
runtime of a rollout inside the improvement process is in-
dependent of the number of agents. However in practice,
systems with more agents will take significantly more time
to simulate, thereby increasing the time per rollout. But
this is due to the complexity of domains or simulators, not
the complexity of the DecRSPI algorithm.

Theorem 4. Ignoring system simulation time, the DecR-
SPI algorithm has linear time and space complexity with
respect to the number of agents |I|.

4 Experiments

We performed experiments on several common benchmark
problems in the DEC-POMDP literature to evaluate the so-
lution quality and runtime of DecRSPI. A larger distributed
sensor network domain was used to test the scalability of
DecRSPI with respect to the number of agents.

4.1 Benchmark Problems

We first tested DecRSPI on several common benchmark
problems for which the system dynamics–an explicit rep-
resentation of the transition, observation and reward func-
tions –is available. To run the learning algorithm, we im-
plemented a DEC-POMDP simulator based on the dynam-
ics and learned the joint policy from the simulator. We used
two types of heuristic policies to sample belief states: the

random policy that randomly chooses an action with a uni-
form distribution, and the MDP-based policy that chooses
an action according to the global state (which is known dur-
ing the learning phase). For the benchmark problems, we
solved the underlying MDP models and used the policies
for sampling. DecRSPI selects a heuristic each time with a
chance of 0.55 acting randomly and 0.45 for MDP policies.

There are few work on learning policies in the gen-
eral DEC-POMDP setting. In the experiments, we com-
pared our results with the distributed gradient descent
(DGD) [15] with different horizons. The DGD approach
performs the gradient-descent algorithm for each agent in-
dependently to adapt the parameters of each agent’s local
policy. We also present the results of PBIP-IPG [1]–the
best existing planning algorithm –for these domains. No-
tice that PBIP-IPG computes the policy based on an explicit
model of system dynamics. Thus, the values of PBIP-IPG
can be viewed as upper bounds for learning algorithms.
Due to the randomness of Monte-Carlo methods, we ran
the algorithm 20 times per problem and reported average
runtimes and values. The default number of policy nodes
N is 3 and the number of samples K is 20.

We experimented with three common DEC-POMDP
benchmark problems, which are also used by PBIP-
IPG [1]. The Meeting in a 3×3 Grid problem [3] involves
two robots that navigate in a 3×3 grid and try to stay as
much time as possible in the same cell. We adopted the
version used by Amato et al. [1], which has 81 states, 5
actions and 9 observations per robot. The results for this
domain with different horizons are given in Figure 2(a).
The Cooperative Box Pushing problem [17] involves two
robots that cooperate with each other to push boxes to their
destinations in a 3×4 grid. This domain has 100 states, 4
actions and 5 observations per robot. The results are given
in Figure 2(b). The Stochastic Mars Rover problem [1] is
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Figure 3: The distributed sensor network domain.

a larger domain with 2 robots, 256 states, 6 actions and 8
observations per robot. The results are given in Figure 2(c).

In all three domains, DecRSPI outperforms DGD with
large margins. In the Meeting in Grid and Mars Rover
domains, the learning results of DecRSPI are quite close
to the planning values of PBIP-IPG. Note that PBIP-IPG
is also an MBDP-based algorithm whose values represent
good upper bounds on the learning quality of DecRSPI. Be-
ing close to the value of PBIP-IPG means that DecRSPI
does learn good policies given the same heuristics and pol-
icy sizes. In the Cooperative Box Pushing domain, the gap
between DecRSPI and PBIP-IPG is a little bit larger be-
cause this problem has more complex interaction structure
than the other two domains. Interestingly, in this domain,
the value of DGD decreases with the horizon.

We also present timing results for each domain with dif-
ferent horizons (T ) in Figure 2(d), which shows the same
property (quadratic time complexity) as stated in Theo-
rem 3. In Figure 2(e), we test DecRSPI with different num-
ber of trials (K) and a fixed horizon of 20. The value of the
Meeting in Grid and Mars Rover domains becomes stable
when the number of trials is larger than 10. But the Box
Pushing problem needs more trials (about 40) to get to a
stable value, which is very close to the value of PBIP-IPG.
In Figure 2(f), we show that runtime grows linearly with
the number of trials in all three domains. It is worthwhile to
point out that in these experimental settings, DecRSPI runs
much faster than PBIP-IPG. For example, in the Stochastic
Mars Rover domain with horizon 20, PBIP-IPG may take
14947s while DecRSPI only needs 49.8s.

4.2 Distributed Sensor Network

The distributed sensor network (DSN) problem, adapted
from [20], consists of two chains with identical number
of sensors as shown in Figure 3. The region between the
chains is split into cells and each cell is surrounded by four
sensors. The two targets can move around in the place, ei-
ther moving to a neighboring cell or staying in place with
equal probability. Each target starts with an energy level
of 2. A target is captured and removed when it reaches 0.
Each sensor can take 3 actions ( track-left, track-right and
none) and has 4 observations (left and right cells are oc-
cupied or not), resulting in joint spaces of 3|I| actions and
4|I| observations (e.g. 320≈ 3.5 × 109 joint actions and
420≈ 1.1× 1012 joint observations for the 20 agents case).
Each track action has a cost of 1. The energy of a target
will be decreased by 1 if it is tracked by at least three of the
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Figure 4: Value and runtime of DSN (T=10, N=3, K=20).

four surrounding sensors at the same time. When a target is
captured, the team gets a reward of 10. When all targets are
captured, the DSN restarts with random target positions.

This domain is designed to demonstrate the scalability of
DecRSPI over the number of agents. Most of the plan-
ning algorithms for general DEC-POMDPs have only been
tested in domains with 2 agents [1, 8, 11, 17, 18]. It is very
challenging to solve a general DEC-POMDP problems
with many agents because the joint action and observation
spaces grow exponentially over the number of agents. Our
results in the DSN domain with horizon 10 and random
heuristics are shown in Figure 4. Again, DecRSPI achieves
much better value than DGD. The value decreases with the
growing number of agents because there are more cells for
the targets to move around and greater chance of sensor
miscoordination. Note that DecRSPI solves this problem
without using any specific domain structure and the learned
policies are totally decentralized, without any assumption
of communication or global observability. The figure also
shows two measures of timing results: DecRSPI-Time–the
runtime of DecRSPI, and DecRSPI+SIM-Time–the overall
runtime including domain simulation time. The two mea-
sures of runtime grow with the number of agents. As stated
in Theorem 4, DecRSPI-Time grows linearly, which shows
that it scales up very well with the number of agents.

5 Related Work

Several policy search algorithms have been introduced to
learn agents’ policies without the system dynamics. The
distributed gradient descent (DGD) algorithm performs
gradient-based policy search independently on each agent’s
local controller using the experience data [15]. Zhang et al.
[20] proposed an online natural actor-critic algorithm using
conditional random fields (CRF). It can learn cooperative
policies with CRFs, but it assumes that agents can com-
municate and share their local observations at every step.
Melo [13] proposed another actor-critic algorithm with nat-
ural gradient, but it only works for transition-independent
DEC-POMDPs. In contract, our algorithm learns coopera-
tive policies for the general DEC-POMDP setting without
any assumption about communication.
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The rollout sampling method has been introduced to learn
MDP policies without explicitly representing the value
function [9, 10, 12]. The main idea is to produce training
data through extensive simulation (rollout) of the previous
policy and use a supervised learning algorithm (e.g. SVM)
to learn a new policy from the labeled data. The rollout
technique is also widely used to perform lookahead and es-
timate the value of action in online methods [4, 5, 7]. Our
algorithm uses rollout sampling to estimate the parameters
of policy improvements and select the best joint policy.

6 Conclusion

We have presented the decentralized rollout sampling pol-
icy iteration (DecRSPI) algorithm for learning cooperative
policies in partially observable multi-agent domains. The
main contribution is the ability to compute decentralized
policies without knowing explicitly the system dynamics.
In many applications, the system dynamics is either too
complex to be modeled accurately or too large to be rep-
resented explicitly. DecRSPI learns policies from experi-
ence obtained by merely interacting with the environment.
The learned policies are totally decentralized without any
assumption about communication or global observability.
Another advantage of DecRSPI is that it focuses the com-
putation only on reachable states. As the experiments show,
little sampling is needed for domains where agents have
sparse interaction structures, and the solution quality calcu-
lated by a small set of samples is quite close to the best ex-
isting planning algorithms. Most importantly, DecRSPI has
linear time complexity over the number of agents. There-
fore DecRSPI can solve problems with up to 20 agents as
shown in the experiments. Additionally, DecRSPI bounds
memory usage as other MBDP-based algorithms. In the fu-
ture, we plan to further exploit the interaction structure of
agents and make even better use of samples, which will be
helpful for large real-world domains.
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