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Abstract. A soft robot is a kind of robot that is constructed with soft,
deformable and elastic materials. Control of soft robots presents com-
plex modeling and planning challenges. We introduce a new approach
to accomplish that, making two key contributions: designing an abstract
representation of the state of soft robots, and developing a reinforcement
learning method to derive effective control policies. The reinforcement
learning process can be trained quickly by ignoring the specific materials
and structural properties of the soft robot. We apply the approach to
the Honeycomb PneuNets Soft Robot and demonstrate the effectiveness
of the training method and its ability to produce good control policies
under different conditions.
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1 Introduction

Recently, soft robotics have attracted growing attention from multiple disciplines
including robotics, materials science, bionics, and AI. In contrast to hard-bodied
robots [4,15], soft robots are made of soft and/or extensible materials from the
surface to the motion mechanism. Soft robots have shown remarkable potential
in realizing some performance which conventional rigid robots can hardly per-
form even after several decades of research. For example, a soft robot has an
instinctive advantage on grabbing irregular, deformable or fragile objects, which
is needed absolutely in domestic services. A soft robot can also fulfill manipula-
tion friendly and safely when it works closely with humans, which is also beyond
the capabilities of conventional service robots [14,19,22]. However, unlike rigid
robots, which can be easily and accurately modeled and controlled using mature
theories and methodologies, modeling and controlling of soft robots present new
challenges to AT and robotics [11,23].

While softness can be an advantage of typical soft robots [14], it also makes
them particularly vulnerable to a variety of environmental impacts [25]. In
domestic service scenarios, a soft robot may interact with a wide variety of
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objects in the environment, where some of the information of these objects and
the robot itself cannot be effectively perceived. For example, hardness or weight
of an object that the robot tries to pick up can potentially interfere with the
interaction. As a result, it will seriously affect the behavior and control of the
robot. Therefore, to improve the robustness of soft robot control, especially under
the insufficient perception, is critical for the development of soft robots.

Even when all the information about the environment and the soft robot
itself is provided, building an effective model for a particular task is still a sub-
stantial challenge [21]. It may involve very complex physical mechanics analysis
that can only be established for a specific task [26]. With small changes to the
task or environment, the model may be significantly different. To date, there
is no principled way for modeling soft robots due to the diversity of material
and structure (e.g., pneumatic, hydraulic, cables, electro-active polymers) [14].
Moreover, complex mechanics geometric models and simulator for soft robots
are often difficult to adequately reflect the real characteristics of the hardware
[8]. Various details that are ignored by the model tend to introduce hurdles that
compromise performance [6].

To address these challenges, we propose a simple, effective and integrated
reinforcement learning (RL) framework into soft robotics for the soft robot con-
trol problem. In contrast to other approaches for controlling soft robots [22],
our approach has the advantage of ignoring the specific properties of the mate-
rials and partial structural characteristics of soft robots, thereby simplifying the
modeling task. Besides, since we apply reinforcement learning directly to the
soft robot hardware, the various features of the soft robot can also be directly
reflected in the results of reinforcement learning. Hence, we can obtain a soft
robot control policy that is well aligned with the actual hardware.

Although reinforcement learning has substantial advantages over existing
methods, it also presents some challenges.

Firstly, reinforcement learning generally requires that the target problem be
abstracted as a Markov decision process (MDP) [1]. Therefore, how to derive a
set of representations that can adequately reflect the nature of soft robots, but
also facilitate the use of reinforcement learning algorithms is the first problem
we face. In this paper, we introduce a class of abstract representations of soft
robot control problems in the representation part.

Secondly, in the training part, the performance of reinforcement learning is
often dependent on an effective exploration of the problem space. Due to the
presence of actions with infinite degrees of freedom and the continuous state
space of soft robots [22], to obtain an accurate result, a large-scale search effort
is necessary. Nonetheless, the possible loss of the robot hardware and the cost
of time limit the scale of training. And since we anticipate the tasks to be
handled by soft robots to become progressively more complicated, even though
the performance of soft robots continues to improve, the above costs cannot
be ignored. And while simulators have been used in the past to address that
challenge, developing a realistic simulator of our soft robot is extremely difficult.
This prevents us from relying on simulators for training. To address this, we use a
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Fig. 1. Platform with soft robot arms, control circuit, air pumps and valves.

combined simulation and physical two-step training to enhance the performance
of our resource-bounded physical robot training.

Intuitively, training results must be efficiently performed to ensure the overall
system performance. In the experiments, we demonstrate that different execution
conditions have significant impacts on the performance of the policy. This has
greatly affected the effectiveness of reinforcement learning in our setting. In the
execution part, we explore the possibility of policy open-loop and closed-loop
execution and carefully evaluate the performance under different conditions. In
order to perform open-loop control, we use the simulator to maintain an internal
state to implement a “pseudo-closed-loop” control. And we rely on external
sensors to achieve closed-loop control.

The remainder of this paper is organized as follows. In Sect. 2, we begin with
the reinforcement learning implementation with the state representation, the
assumptions and the algorithm in details. In Sect. 3, we implement and test the
methods we discussed above on a physical soft robot platform to comprehensively
show the performance of the methods. Section4 provides an overview of the
related work. Section 5 concludes the paper and summaries the contribution and
future work.

2 Effective Soft Robot Control

As shown in Fig. 1, we use a soft robot constructed with honeycomb pneumatic
network (HPN) [24]. It has many advantages, such as structural stability, flexi-
bility, and crush-resistance. The structure of the soft robot makes it possible to
carry out large-scale and powerful motion on a light self weight. Here, we try
to achieve effective control of the soft robot arm. The difference between this
problem with general soft robot control is that we are more concerned with the
position of the soft robot arm end coordinates and the policy performance under
environmental influences.

We ensure that our method is applicable to other piecewise soft robots. Under
this assumption, the entire soft robot consists of relatively independent sections.
Each section has the property of infinite degrees of freedom. An advantage of
a piecewise soft robot is that it is easy to expand, for example by adding new
sections to the end of the soft robot (Figs.2 and 3).
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Fig. 3. Illustration of the state representation. The states consist of spatial coordinates
of each point in the illustration. Each arm state has five coordinates. Section 3 describes
the specific method to obtain states in real time.

2.1 The MDP Representation

To apply reinforcement learning, the first step is to abstract the problem and
represent it as a Markov decision process (MDP). We describe below the funda-
mental MDP elements, including states (.5), actions (A), and the reward function
(R(s,a,s")).

States. A convenient representation of the state space should be able to ade-
quately reflect the configuration of the soft robot, and must also be easy to
manipulate. To balance these two factors, we use a set of predetermined points
to represent the state of the piecewise soft robot. Based on the piecewise prop-
erty, the state representation of the entire soft robot is the combination of the
states of each section.

We use three coordinates to represent a section state, respectively, the begin-
ning, the center and the end. The start and end points of the two adjacent
sections are overlapped. So, for a soft robot connected by n sections, each state
contains n * 2 + 1 continuous space coordinates p,.

State = {s1, $2, 83, ...} (1)
Vs € State

s = {p17p2ap3a }
- {(xlayhzl)y (5527?42,22)7 (333793,23)7 }
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Actions. Action abstraction is an essential expression of soft robot character-
istics. Here we are also faced with a dilemma: a too simple abstraction will
severely limit the capacity of soft robots, while an overly complex abstraction
could compromise the model’s ease of use and versatility.

Therefore, in combination with our observation of a large number of soft
robots [14], we define the action as the movement of one of the motion section
in discrete directions.

Action = {left,right,long, short,...} x {all sections} (2)

This is an abstraction of action, not the action that can be used directly in
the soft robot. For reinforcement learning, this is appropriate. But in order to
implement on soft robots, we must define these actions integrated with the phys-
ical implementation of the soft robot. For cable-based soft robots, these actions
mean different cable adjustments. And for pneumatic soft robot, these actions
mean different air pressure adjustments. More specifically, we can increase or
decrease each air bag air pressure to define motion section actions.

For a two motion mechanisms (M, and M) motion section there are 4
actions: (1) left: M, increases a unit pressure, M, remains unchanged. (2) right:
M, remains unchanged, M, increases a unit pressure. (3) long: M, increases a
unit pressure, M, increases a unit pressure. (4) short: M, decreases a unit
pressure, M, decreases a unit pressure.

In practice, “a unit pressure” may represent a unit of air pressure change, may
also represent a unit of the inflating volume, but also may represent a period
of inflation. The representation of an action is closely related to a particular
physical implementation, in the last case “a unit” even means a unit of time.

Different action representations lead to different models. In either case, the
problem of uncertainty needs to be dealt with. The uncertainty of the action is
taken into account in the design of our algorithm, while the uncertainty of the
observation is ignored.

Reward Function. The definition of a reward function depends on the task we
are trying to complete. We define the reward function as a linear correlation
function of the states in order to simplify the representation of the problem.

For example, we want to move the end of the soft robot to a specified target
position pp. We define the reward function R(s,a,s’) as:

R(s,a,s’) = distance(s, st) — distance(s', st) (3)
distance(s, sT) = |pg — pr|
= |zg — 27|+ lyg — y7| + |2E — 27|

where pp and p; is the end coordinate of the soft robot state s and s', sp is the
target coordinate.

2.2 The RL Algorithm

The designed learning procedure include two steps, simulation step and physical
step. The main reason for doing so is to decrease physical learning cost and
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increase the quality of policy. Simulation trained policy can improve the efficiency
of physical training. The mainly difference between these two steps is learning
algorithm interaction with the simulator or real world.

@-Learning. Based on above settings, we use function approximation Q-Learning
[3] to train the control policy. Each episode, soft robot executes a sequence of
actions from the initial state. On the basis of the above state, action, reward
representation, we introduce a “final action” apg. This action does not affect
the shape of the robot, but indicating this episode will be stopped. The entire
learning process consists of repeating episodes from the initial state to ap.

Because of the continuous space and nonlinear setting of the problem, we
map the state space into a high-dimensional linear space. This data structure
can be seen as a neural network with only one hidden layer. We use the data
structure to fit the Q(s, a) function. The advantage of this approach lies in the
simplicity of implementation and maintenance. But as the number of soft robot
sections increases, the dimensions of the superposition space increase at a faster
rate to keep performance.

From the definition of reward, we can see that if we do not have any
discount factor v or v = 1.0, the intermediate state is not important. For this
task, we want to perform as few steps action as possible. Therefore, we modify
the Q function to be the mean value function associated with the step numbers.

Q(s¢,ar) = Q(s¢, ar) (4)
‘H%[H%R(St,at) St41)
+t+il mng(stH,a) - Q(Su at)]

With probability e, the algorithm chooses an action at random and with
probability 1 — e choose an action a = arg max, Q(s, a).

Simulation Step. We developed the simulator based on the work of [6] to achieve
the same effect as possible. Simulator parameters are adjusted empirically and
the uncertainty of motion, hypothesis of normal distribution, is introduced. The
observation of the states and the execution of the actions is relatively straight-
forward in the simulator.

We use the simulator to sample in the state space before reinforcement learn-
ing. We randomly execute actions and compute the Q value in each sample. By
sampling the state space, we use the gradient descent algorithm to compute the
weight of this network. We use the Q(s,a) function trained in this way as the
initial Qo in simulation step to reach better performance.

Physical Step. In addition to the soft robot experiment platform that we also use
the OptiTrack! motion capture system (MCS) [5,7] as a visual sensor to observe
soft robot state. Our method requires that states be fully observable, which

! http://optitrack.com/.
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means that we ignore sensor errors. Experimental platform has two air pumps
for pumping and inflatable. Air pumps with the valve opening and closing to
achieve the actions we defined. More detailed information about the experimental
platform will be described in the Sect. 3.

We use the simulation trained Q(s, a) function as the initial Qg in the physical
step. In addition, there are not any structural differences between the two steps in
the algorithm. The main difference is the parameter setting and implementation
of the algorithm.

It is also very important that we tried the reinforcement learning in physical
environment only. But very unfortunately, after a long period of training, we
still can not get the policy can be effectively executed. In a few cases, the policy
may even fall into a non-stopable situation.

2.3 Execution and Control

How to execute effectively after learned a policy is also our main concern. We
will discuss this issue from the perspective of closed-loop and open-loop (Fig. 4).

Get state s Input s to Execute ain Get state s Input s to Executea in
from the maxQ(s,a) to real world from the maxQ(s,a) to real world and
sensor getaction a : simulator getaction a simulator
(a) Open-loop control (b) Closed-loop control

Fig. 4. The primary difference between open-loop and closed-loop control. The closed-
loop control is shown above, and the open-loop control is shown below.

Closed-loop control is relatively simple. Each time we obtain the current
state of the soft robot from the actual sensor. We then input this state into the
Q function to get and execute the optimal action of the policy (Figs.5 and 6).

For open-loop control, we cannot observe the actual state of the soft robot
directly. So, the simulator is used to maintain an internal state of the robot. For
each execution cycle, we use the internal state as the state of the entity robot.
And in each cycle, we execute the same action in both the simulation and the
real world. It is easy to see that this situation lead to unavoidable errors. But for

Fig. 5. Soft Robot 3D prints hard com- Fig. 6. The markers we put on the
ponents and EPDM (Ethylene Propy- robot.
lene Diene Monomer) airbags.
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some scenarios where closed-loop control cannot be achieved, this compromise
is worthwhile.

3 Experiments

3.1 Platform Setup

We use a 3-section soft robot arm to complete the validation of the experiment.
In this experimental platform, we use two air pumps to complete the pumping
and filling in each section. The control circuit of the valve enables us to achieve
almost continuous action. Hence we limited each movement period to 100 ms.

The soft robot arm composed by honeycomb cells consists of soft actuator
and variable hexagonal frame. This structure is a combination of soft and hard
components. If stay in a relaxed state, the cell is approximately hexagonal. We
use 3D printing to produce all the structural and hard components. The soft
actuator is made of EPDM (Ethylene Propylene Diene Monomer) with high
temperature vulcanization molding.

Another important motion error source is air-tightness of the air bag. We
select the same initial state each time to reduce the impact of this error.

3.2 Policy Validation and Execution

We executed the policy we learned several times to verify the final performance.
In particular, we tested the performance of different policies under different loads
weight. More specifically, we selected 0g, 10g, 20 g, 50 g and 100 g. At each cycle,
we get the current state of the soft robot arm from the MCS and then execute
the action with the highest value in the RDF constructed Q function (Figs.7
and 8).

Figure 9 shows the execution results of different environment (different load)
and different experiment settings in 4 cases: (1) Use the simulator trained policy

Epsiode Reward

Calbration Engine: Ready

Markers: 32 .
4 Setected: 0 | o 100 200 300 400 500
Sutete | Conersi 20r | POt 2508 (15 ) By Lims |owm i |4 Ol SEx | S Epsiode

Fig. 7. This is how the soft robot looks Fig. 8. Episode reward we get during
like in motion capture system. Using 500 episodes in simulator.

this system, we can directly get the

coordinates of each marker location.
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Fig. 9. The average reward of 10 times execution of different policies and different load.
Which are using simulator trained policy only (®), simulator trained policy and MCS
(®), reality trained policy and MCS (A), simulator, reality trained policy and MCS
(m). Here, the reward is not Q value but the sum of the reward for each step. According
to our manual measurement results, the theoretical maximum reward is about 20.15.

and maintains an internal state in simulator. (2) Use the simulator trained policy
and sensors to acquire real states in real time. (3) 50 episodes reality environ-
ment trained policy and use sensors to acquire reality states in real time. (4) 50
episodes real environment trained policy based on simulator trained result and
use sensors to acquire real states in real time.

In the first case above, we implement the open-loop control of the soft robot.
The result is affected by 2 problems: the simulator are not fully accurate and
internal state cannot effectively adapt the variety of load. Intuitively, we can not
simply perform the same sequence of actions in different scenes.

In the cases 2, 3 and 4, we use the sensors to observe the soft robot’s own
state in real time to achieve a closed-loop control. In these cases, we improve the
performance of policy execution in different loads.

In case 3, We tried to use physical robots directly to train the control policy.
However, due to lack of training samples, in many cases the robot will execute a
very strange action. In some cases, we observed that the execution process can
not converge, so we must manually stop the execution of the policy (Fig. 10).

Fig. 10. Left side is what expect to achieve, i.e., the shortest sequence of actions and
closest to the target. Right side shows what actually gets from our RL algorithm.
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In case 4, the results are significantly better than the other cases. But com-
pare to the theoretical maximum reward still have a certain gap. According to
our analysis, this gap comes from the following factors: (1) Discretize actions
cause a decrease in policy precision. (2) The learning result does not achieve
the optimal solution. (3) The error of hardware of current soft robot experiment
platform. More specifically, for our experimental platform, air tightness is the
main source of error.

4 Related Work

Piecewise constant curvature kinematics, an approximation of the continuum
and soft robot kinematics model, has been widely used in a variety of control
tasks. [26] made a review of kinematic modeling for continuum robots. The use of
complex curve modeling often leads problems to in sophisticated physical model
analysis. But the complexity of the physical model has brought a wide range of
adaptation challenges.

Because many biological systems consist of soft materials, biomimetics is
often a motivation for the work on soft robots. Researchers have attempted
to analysis and utilize a number of biological organs. For example, the robotic
elephant trunk manipulator [10] and the OctArm continuum manipulator [18].
Based on an analysis of the morphological features of the octopus arm (connec-
tive tissue, arm density, transverse muscles, longitudinal muscles), Laschi [13],
Mazzolai [17] and their groups designed the octopus soft robot arm.

To improve the accuracy of the kinematics model, [9] presented a feed-forward
neural network learning method to deal with the inverse kinetics elements calcu-
lation for a cable-driven non-constant curvature soft manipulator. Because there
are small differences between all the individual soft manipulators, they all had
to be trained separately in order to represent the relation between the position
of the robot tip and the cables’ output force.

Kober and Peters [12] summaries the relationship between robotic and rein-
forcement learning. Several challenges like the curse of dimensionality, real-world,
modeling and goal are mentioned. Moreover, MDP-based methods are widely
used by other robot systems such as soccer [2,27] and disaster response [20,28].

5 Conclusion and Future Work

This paper presents a new approach for the control of a piecewise soft robot.
Through the model-free reinforcement learning, we finally get the action policy
for a specific task. In order to overcome the limitations of soft robot hardware, we
use the simulator and physical two-step learning framework to improve the policy
performance in the case of limited physical learning samples. After the policy
is obtained, we use motion capture system to implement the soft robot closed-
loop control, thereby enhancing the soft robot’s adaptability to the environment.
And we using the simulator to maintain an internal state to implement open-loop
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control. All the above ideas have been Implemented and verified in a physical
soft robot platform.

There are many future work for soft robot control via reinforcement learning.
Firstly, the value function or policy migration between the simulation and the
reality needs a more solid theoretical guidance, analysis and proof. Secondly,
more complex and diversified reinforcement learning methods have the potential
to improve system performance. Finally, this approach can be extended to more
complex forms and tasks such as obstacle avoidance and locomotion.

Acknowledgments. Feng Wu was supported in part by National Natural Science
Foundation of China (No. 61603368), the Youth Innovation Promotion Association
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